Cargando…

Kernel smoothing : principles, methods and applications /

Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ghosh, S. (Sucharita) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, 2018.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1004981730
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 170928s2018 nju ob 001 0 eng
010 |a  2017046749 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d YDX  |d IDEBK  |d OCLCF  |d DG1  |d MERER  |d UAB  |d UPM  |d UMI  |d STF  |d COO  |d TOH  |d NAM  |d CEF  |d KSU  |d DEBBG  |d WYU  |d G3B  |d LVT  |d U3W  |d VT2  |d S9I  |d C6I  |d DLC  |d OCLCO  |d OCLCQ  |d UX1  |d OCLCQ  |d SOE  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1031279328  |a 1048194445  |a 1103254802 
020 |a 9781118890516  |q (epub) 
020 |a 1118890515 
020 |a 9781118890509  |q (pdf) 
020 |a 1118890507 
020 |a 9781118890370  |q (electronic bk. ;  |q oBook) 
020 |a 111889037X  |q (electronic bk. ;  |q oBook) 
020 |z 9781118456057 
020 |z 111845605X 
029 1 |a AU@  |b 000066754675 
029 1 |a AU@  |b 000067102899 
029 1 |a CHNEW  |b 000979929 
029 1 |a CHVBK  |b 507395794 
029 1 |a GBVCP  |b 1015065236 
035 |a (OCoLC)1004981730  |z (OCoLC)1031279328  |z (OCoLC)1048194445  |z (OCoLC)1103254802 
037 |a CL0500000956  |b Safari Books Online 
042 |a pcc 
050 1 0 |a QA278 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 0 |a 511/.42  |2 23 
049 |a UAMI 
100 1 |a Ghosh, S.  |q (Sucharita),  |e author. 
245 1 0 |a Kernel smoothing :  |b principles, methods and applications /  |c by Sucharita Ghosh. 
250 |a First edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
505 0 |a Density estimation -- Nonparametric regression -- Trend estimation -- Semiparametric regression -- Surface estimation. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of contexts, considering independent and correlated data e.g. with short-memory and long-memory correlations, as well as non-Gaussian data that are transformations of latent Gaussian processes. These types of data occur in many fields of research, e.g. the natural and the environmental sciences, and others. Nonparametric density estimation, nonparametric and semiparametric regression, trend and surface estimation in particular for time series and spatial data and other topics such as rapid change points, robustness etc. are introduced alongside a study of their theoretical properties and optimality issues, such as consistency and bandwidth selection. Addressing a variety of topics, Kernel Smoothing: Principles, Methods and Applications offers a user-friendly presentation of the mathematical content so that the reader can directly implement the formulas using any appropriate software. The overall aim of the book is to describe the methods and their theoretical backgrounds, while maintaining an analytically simple approach and including motivating examples--making it extremely useful in many sciences such as geophysics, climate research, forestry, ecology, and other natural and life sciences, as well as in finance, sociology, and engineering. A simple and analytical description of kernel smoothing methods in various contexts Presents the basics as well as new developments Includes simulated and real data examples Kernel Smoothing: Principles, Methods and Applications is a textbook for senior undergraduate and graduate students in statistics, as well as a reference book for applied statisticians and advanced researchers. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Smoothing (Statistics) 
650 0 |a Kernel functions. 
650 6 |a Lissage (Statistique) 
650 6 |a Noyaux (Mathématiques) 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Kernel functions  |2 fast 
650 7 |a Smoothing (Statistics)  |2 fast 
776 0 8 |i Print version:  |a Ghosh, S. (Sucharita).  |t Kernel smoothing.  |b First edition.  |d Hoboken, NJ : John Wiley & Sons, 2018  |z 9781118456057  |w (DLC) 2017039516 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118456057/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1623586 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38428532 
938 |a YBP Library Services  |b YANK  |n 14947639 
994 |a 92  |b IZTAP