Cargando…

Neural networks. Part 5, Introduction to real-world machine learning /

"Neural networks form the foundation for deep learning, the most advanced and popular machine learning technique in use today. This course provides an introduction to neural networks. It begins with an overview of a neural network's basic concepts and building blocks - neurons, weights, ac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Staglianò, Alessandra (Orador), Ma, Angie (Orador), Willis, Gary (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1004966453
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170929s2017 xx 044 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1004966453 
037 |a CL0500000895  |b Safari Books Online 
050 4 |a QA76.87 
049 |a UAMI 
100 1 |a Staglianò, Alessandra,  |e speaker. 
245 1 0 |a Neural networks.  |n Part 5,  |p Introduction to real-world machine learning /  |c with Alessandra Staglianò, Angie Ma, and Gary Willis. 
246 3 0 |a Introduction to real-world machine learning 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (43 min., 16 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenters, Alessandra Staglianò, Angie Ma, and Gary Willis. 
500 |a Title from title screen (viewed September 28, 2017). 
500 |a Date of publication taken from resource description page. 
500 |a "Part 5 of 6." 
520 |a "Neural networks form the foundation for deep learning, the most advanced and popular machine learning technique in use today. This course provides an introduction to neural networks. It begins with an overview of a neural network's basic concepts and building blocks - neurons, weights, activations, and layers - before explaining how to train one using gradient descent. The optimization technique is explained with a visual example and different issues such as parameter initialization and model validation are discussed. The course covers the different types of neural network architectures, explains the differences between them, and illustrates practical applications for each. Because training a neural network can be very slow, the course will offer up some tricks for speeding up the process and improving results. The course ends with a review of the history of this fascinating field, from its origin to its fall, and then its subsequent rise in modern days. Requirements include a clear understanding of supervised learning and optimization."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
700 1 |a Ma, Angie,  |e speaker. 
700 1 |a Willis, Gary,  |e speaker. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781492023975/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP