Loading…

Nonparametric finance /

An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and f...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Klemelä, Jussi, 1965- (Author)
Format: Electronic eBook
Language:Inglés
Published: Hoboken, NJ : John Wiley & Sons, Inc., [2018]
Series:Wiley series in probability and statistics
Subjects:
Online Access:Texto completo (Requiere registro previo con correo institucional)
Table of Contents:
  • Cover; Title Page; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 Statistical Finance; 1.2 Risk Management; 1.3 Portfolio Management; 1.4 Pricing of Securities; Part I Statistical Finance; Chapter 2 Financial Instruments; 2.1 Stocks; 2.1.1 Stock Indexes; 2.1.1.1 Definition of a Stock Index; 2.1.1.2 Uses of Stock Indexes; 2.1.1.3 Examples of Stock Indexes; 2.1.2 Stock Prices and Returns; 2.1.2.1 Initial Price Data; 2.1.2.2 Sampling of Prices; 2.1.2.3 Stock Returns; 2.2 Fixed Income Instruments; 2.2.1 Bonds; 2.2.2 Interest Rates; 2.2.2.1 Definitions of Interest Rates.
  • 2.2.2.2 The Risk Free Rate2.2.3 Bond Prices and Returns; 2.3 Derivatives; 2.3.1 Forwards and Futures; 2.3.1.1 Forwards; 2.3.1.2 Futures; 2.3.2 Options; 2.3.2.1 Calls and Puts; 2.3.2.2 Applications of Options; 2.3.2.3 Exotic Options; 2.4 Data Sets; 2.4.1 Daily S & P 500 Data; 2.4.2 Daily S & P 500 and Nasdaqâ#x80;#x90;100 Data; 2.4.3 Monthly S & P 500, Bond, and Bill Data; 2.4.4 Daily US Treasury 10 Year Bond Data; 2.4.5 Daily S & P 500 Components Data; Chapter 3 Univariate Data Analysis; 3.1 Univariate Statistics; 3.1.1 The Center of a Distribution; 3.1.1.1 The Mean and the Conditional Mean.
  • 3.1.1.2 The Median and the Conditional Median3.1.1.3 The Mode and the Conditional Mode; 3.1.2 The Variance and Moments; 3.1.2.1 The Variance and the Conditional Variance; 3.1.2.2 The Upper and Lower Partial Moments; 3.1.2.3 The Upper and Lower Conditional Moments; 3.1.3 The Quantiles and the Expected Shortfalls; 3.1.3.1 The Quantiles and the Conditional Quantiles; 3.1.3.2 The Expected Shortfalls; 3.2 Univariate Graphical Tools; 3.2.1 Empirical Distribution Function Based Tools; 3.2.1.1 The Empirical Distribution Function; 3.2.1.2 The Tail Plots; 3.2.1.3 Regression Plots of Tails.
  • 3.2.1.4 The Empirical Quantile Function3.2.2 Density Estimation Based Tools; 3.2.2.1 The Histogram; 3.2.2.2 The Kernel Density Estimator; 3.3 Univariate Parametric Models; 3.3.1 The Normal and Logâ#x80;#x90;normal Models; 3.3.1.1 The Normal and Logâ#x80;#x90;normal Distributions; 3.3.1.2 Modeling Stock Prices; 3.3.2 The Student Distributions; 3.3.2.1 Properties of Student Distributions; 3.3.2.2 Estimation of the Parameters of a Student Distribution; 3.4 Tail Modeling; 3.4.1 Modeling and Estimating Excess Distributions; 3.4.1.1 Modeling Excess Distributions; 3.4.1.2 Estimation.
  • 3.4.2 Parametric Families for Excess Distributions3.4.2.1 The Exponential Distributions; 3.4.2.2 The Pareto Distributions; 3.4.2.3 The Gamma Distributions; 3.4.2.4 The Generalized Pareto Distributions; 3.4.2.5 The Weibull Distributions; 3.4.2.6 A Three Parameter Family; 3.4.3 Fitting the Models to Return Data; 3.4.3.1 S & P 500 Daily Returns: Maximum Likelihood; 3.4.3.2 Tail Index Estimation for S & P 500 Components; 3.5 Asymptotic Distributions; 3.5.1 The Central Limit Theorems; 3.5.1.1 Sums of Independent Random Variables; 3.5.1.2 Sums of Independent and Identically Distributed Random Variables.