Digital signal processing with kernel methods /
Offering example applications and detailed benchmarking experiments with real and synthetic datasets throughout, this book provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. --
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
Wiley,
2017.
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- From signal processing to machine learning
- Introduction to digital signal processing
- Signal processing models
- Kernel functions and reproducing kernel hilbert spaces
- A SVM signal estimation framework
- Reproducing kernel hilbert space models for signal processing
- Dual signal models for signal processing
- Advances in kernel regression and function approximation
- Adaptive kernel learning for signal processing
- SVM and kernel classification algorithms
- Clustering and anomaly detection with kernels
- Kernel feature extraction in signal processing.