Cargando…

Formal languages and automata theory /

Formal Languages and Automata Theory deals with the mathematical abstraction model of computation and its relation to formal languages. This book is intended to expose students to the theoretical development of computer science. It also provides conceptual tools that practitioners use in computer en...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sunitha, K. V. N. (Autor), Kalyani, N. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chennai : Pearson, [2015]
Colección:Always learning.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn978253129
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170321s2015 ii a ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d STF  |d TOH  |d COO  |d VT2  |d EBLCP  |d CEF  |d KSU  |d OCLCQ  |d DEBBG  |d OCLCA  |d WYU  |d C6I  |d UAB  |d OCLCQ  |d LVT  |d OCLCO  |d OCLCQ 
019 |a 1302296031 
020 |a 9789332558274 
020 |a 9332558272 
020 0 |z 9789332541641 
029 1 |a GBVCP  |b 1004846398 
035 |a (OCoLC)978253129  |z (OCoLC)1302296031 
037 |a CL0500000839  |b Safari Books Online 
050 4 |a QA267.3 
082 0 4 |a 511.3  |q OCoLC  |2 22/eng/20230203 
049 |a UAMI 
100 1 |a Sunitha, K. V. N.,  |e author. 
245 1 0 |a Formal languages and automata theory /  |c K.V.N. Sunitha, N. Kalyani. 
264 1 |a Chennai :  |b Pearson,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Always learning 
588 0 |a Online resource; title from title page (Safari, viewed March 15, 2017). 
504 |a Includes bibliographical references. 
505 0 |a Cover; Copyright; Contents; Preface; Acknowledgements; List of Important Symbols; List of Important Abbreviations; About the Authors; 1. Mathematical Preliminaries and Formal Languages; 1.1 Set Theory; 1.1.1 Describing a Set; 1.1.2 Empty Set; 1.1.3 Identity and Cardinality; 1.1.4 Subset; 1.1.5 Power Sets; 1.1.6 Operations on Sets: Union, Intersection; 1.1.7 Set Theoretic Equalities; 1.1.8 Sequence Versus Set; 1.1.9 Ordered Pairs; 1.1.10 Cartesian Product; 1.2 Relations; 1.2.1 Binary Relation; 1.2.2 Domain and Range of Relation; 1.2.3 Operations on Relations; 1.2.4 Properties of Relations. 
505 8 |a 1.3 Functions1.3.1 Definitions; 1.3.2 Types of Functions; 1.4 Alphabet, String and Language; 1.4.1 Operations on Language; 1.4.2 Grammars; 1.4.3 Types of Grammarsâ#x80;#x93;Chomsky Hierarchy; 1.5 Graphs and Trees; 1.5.1 Directed Graph; 1.5.2 Undirected Graph; 1.5.3 Trees; 1.6 Theorem Proving; 1.6.1 Proof by Induction; 1.6.2 Proof by Contradiction; 1.6.3 Proof by Example; Summary; Short Answers; Fill in the Blanks; Objective Question Bank; Exercises; 2. Finite Automata; 2.1 Finite-state Machine; 2.1.1 Finite-Automaton Model; 2.1.2 Properties of Transition Function â#x80;#x98;câ#x80;#x99;; 2.1.3 Transition Diagram. 
505 8 |a 2.1.4 Transition Table2.2 Language Acceptance; 2.3 Two Types of Finite Automata; 2.3.1 Deterministic Finite Automata (DFA); 2.3.2 Non-deterministic Finite Automaton (NFA); 2.3.3 Acceptance of NFA; 2.4 Equivalence of DFAs and NFAs; 2.5 Converting NFA (MN) to DFA (MD)â#x80;#x94;Subset Construction; 2.6 NFA with Epsilon-(e) Transitions; 2.6.1 Epsilon Closure (e-closure); 2.6.2 Eliminating e-Transitions; 2.6.3 Converting NFA with e-Transition to NFA without e-Transition; 2.6.4 Converting NFA with e-Transition to DFA; 2.7 Comparison Method for Testing Equivalence of Two FAs. 
505 8 |a 2.8 Reduction of Number of States in FA2.8.1 Indistinguishable States; 2.8.2 Equivalent Classes; 2.8.3 Minimization of DFA; 2.8.4 Minimization of DFA Using Myhill Nerode Theorem; 2.9 Finite Automata with Output; 2.9.1 Moore Machine; 2.9.2 Mealy Machine; 2.9.3 Equivalence Between Moore and Mealy Machines; 2.9.4 Interconversions Between Machines; 2.10 Applications of Finite Automata with Output; 2.10.1 The Full-adder; 2.10.2 The String Sequence Detector; Solved Problems; Summary; Short Answers; Fill in the Blanks; Objective Question Bank; Exercises; 3. Regular Languages and Regular Grammars. 
505 8 |a 3.1 Regular Expressions3.2 Regular Sets; 3.3 Identity Rules for Regular Expressions; 3.4 Algebraic Laws for Regular Expressions; 3.5 Equivalence of Finite Automata with Regular Expressions; 3.6 Constructing Regular Expression for Given DFA; 3.6.1 Ardenâ#x80;#x99;s Theorem; 3.6.2 Ardenâ#x80;#x99;s Theorem in Construction of RE; 3.6.3 Construction of RE Using Generalized NFA; 3.7 Pumping Lemma of Regular Expressions; 3.7.1 Formal Definition of the Pumping Lemma; 3.8 Regular Grammar; 3.8.1 Equivalence of Regular Grammar and Finite Automata; 3.8.2 Converting Finite Automaton to Regular Grammar. 
520 |a Formal Languages and Automata Theory deals with the mathematical abstraction model of computation and its relation to formal languages. This book is intended to expose students to the theoretical development of computer science. It also provides conceptual tools that practitioners use in computer engineering. An assortment of problems illustrative of each method is solved in all possible ways for the benefit of students. The book also presents challenging exercises designed to hone the analytical skills of students. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Formal languages. 
650 0 |a Sequential machine theory. 
650 6 |a Langages formels. 
650 6 |a Théorie des machines séquentielles. 
650 7 |a Formal languages.  |2 fast  |0 (OCoLC)fst00932922 
650 7 |a Sequential machine theory.  |2 fast  |0 (OCoLC)fst01112895 
700 1 |a Kalyani, N.,  |e author. 
830 0 |a Always learning. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9789332558274/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5312896 
994 |a 92  |b IZTAP