Hidden Semi-Markov models : theory, algorithms and applications /
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2016]
|
Colección: | Computer science reviews and trends.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction
- 1.1. Markov Renewal Process and Semi-Markov Process
- 1.2. Hidden Markov Models
- 1.3. Dynamic Bayesian Networks
- 1.4. Conditional Random Fields
- 1.5. Hidden Semi-Markov Models
- 1.6. History of Hidden Semi-Markov Models
- ch. 2 General Hidden Semi-Markov Model
- 2.1.A General Definition of HSMM
- 2.2. Forward
- Backward Algorithm for HSMM
- 2.3. Matrix Expression of the Forward
- Backward Algorithm
- 2.4. Forward-Only Algorithm for HSMM
- 2.5. Viterbi Algorithm for HSMM
- 2.6. Constrained-Path Algorithm for HSMM
- ch. 3 Parameter Estimation of General HSMM
- 3.1. EM Algorithm and Maximum-Likelihood Estimation
- 3.2. Re-estimation Algorithms of Model Parameters
- 3.3. Order Estimation of HSMM
- 3.4. Online Update of Model Parameters
- ch. 4 Implementation of HSMM Algorithms
- 4.1. Heuristic Scaling
- 4.2. Posterior Notation
- 4.3. Logarithmic Form
- 4.4. Practical Issues in Implementation
- ch. 5 Conventional HSMMs.
- Note continued: 5.1. Explicit Duration HSMM
- 5.2. Variable Transition HSMM
- 5.3. Variable-Transition and Explicit-Duration Combined HSMM
- 5.4. Residual Time HSMM
- ch. 6 Various Duration Distributions
- 6.1. Exponential Family Distribution of Duration
- 6.2. Discrete Coxian Distribution of Duration
- 6.3. Duration Distributions for Viterbi HSMM Algorithms
- ch. 7 Various Observation Distributions
- 7.1. Typical Parametric Distributions of Observations
- 7.2.A Mixture of Distributions of Observations
- 7.3. Multispace Probability Distributions
- 7.4. Segmental Model
- 7.5. Event Sequence Model
- ch. 8 Variants of HSMMs
- 8.1. Switching HSMM
- 8.2. Adaptive Factor HSMM
- 8.3. Context-Dependent HSMM
- 8.4. Multichannel HSMM
- 8.5. Signal Model of HSMM
- 8.6. Infinite HSMM and HDP-HSMM
- 8.7. HSMM Versus HMM
- ch. 9 Applications of HSMMs
- 9.1. Speech Synthesis
- 9.2. Human Activity Recognition
- 9.3.Network Traffic Characterization and Anomaly Detection.