Cargando…

Python machine learning : unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics /

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Raschka, Sebastian (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn922532674
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 150929s2015 enka o 001 0 eng d
040 |a TEFOD  |b eng  |e rda  |e pn  |c TEFOD  |d IDEBK  |d YDXCP  |d TEFOD  |d UMI  |d OCLCF  |d N$T  |d DEBBG  |d COO  |d EBLCP  |d DEBSZ  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d VT2  |d CEF  |d OCLCQ  |d WYU  |d UAB  |d UKBTH  |d OCLCQ  |d MM9  |d OCLCO  |d OCLCQ  |d QGK  |d INARC  |d OCLCO 
019 |a 922456478  |a 924210598  |a 929122253  |a 931999205  |a 935250209  |a 961680325  |a 1172005783  |a 1259054939  |a 1336105697 
020 |a 9781783555147  |q (electronic bk.) 
020 |a 1783555149  |q (electronic bk.) 
020 |a 1783555130 
020 |a 9781783555130 
020 |z 9781783555130 
029 1 |a AU@  |b 000057019797 
029 1 |a AU@  |b 000066233085 
029 1 |a CHNEW  |b 000893909 
029 1 |a CHVBK  |b 374530661 
029 1 |a DEBBG  |b BV043020526 
029 1 |a DEBBG  |b BV043627563 
029 1 |a DEBSZ  |b 455700982 
029 1 |a DEBSZ  |b 473871866 
035 |a (OCoLC)922532674  |z (OCoLC)922456478  |z (OCoLC)924210598  |z (OCoLC)929122253  |z (OCoLC)931999205  |z (OCoLC)935250209  |z (OCoLC)961680325  |z (OCoLC)1172005783  |z (OCoLC)1259054939  |z (OCoLC)1336105697 
037 |a B1FE479A-E30F-4B96-9580-F8354798CDFC  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Raschka, Sebastian,  |e author. 
245 1 0 |a Python machine learning :  |b unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics /  |c Sebastian Raschka ; foreword by Dr. Randal S. Olson. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
500 |a Includes index. 
520 |a Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models. 
588 0 |a Online resource; title from EPUB title page (OverDrive, January 04, 2016). 
505 0 |a Giving computers the ability to learn from data -- Training machine learning algorithms for classification -- A tour of machine learning classifiers using Scikit-learn -- Building good training sets : data preprocessing -- Compressing data via dimensionality reduction -- Learning best practices for model evaluation and hyperparameter tuning -- Combining different models for ensemble learning -- Applying machine learning to sentiment analysis -- Embedding a machine learning model into a web application -- Predicting continuous target variables with regression analysis -- Working with unlabeled data : clustering analysis -- Training artificial neural networks for image recognition -- Parallelizing neural network training with Theano. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Raschka, Sebastian.  |t Python Machine Learning.  |d Birmingham : Packt Publishing Ltd, ©2015  |z 9781783555130 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783555130/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4191233 
938 |a EBSCOhost  |b EBSC  |n 1071004 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32777836 
938 |a YBP Library Services  |b YANK  |n 12618686 
938 |a Internet Archive  |b INAR  |n pythonmachinelea0000rasc 
994 |a 92  |b IZTAP