Statistical reinforcement learning : modern machine learning approaches /
Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for deci...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Sugiyama, Masashi, 1974- (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press,
[2015]
|
Colección: | Chapman & Hall/CRC machine learning & pattern recognition series.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Keras reinforcement learning projects : 9 projects exploring popular reinforcement learning techniques to build self-learning agents /
por: Ciaburro, Giuseppe
Publicado: (2018) -
Training a reinforcement learning agent to play soccer (football).
Publicado: (2020) -
Reinforcement learning in motion /
Publicado: (2019) -
State-of-the-art deep learning models in Tensorflow : modern machine learning in the Google colab ecosystem /
por: Paper, David
Publicado: (2021) -
TensorFlow for deep learning : from linear regression to reinforcement learning /
por: Ramsundar, Bharath, et al.
Publicado: (2018)