Predictive analytics and data mining : concepts and practice with RapidMiner /
This book shows how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Topics include: exploratory data analysis; visualization; decision trees; rule induction; k-nearest neighbors; naive Bayesian; artificial neural networks; support vector machine...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Waltham, MA :
Morgan Kaufmann,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: 1.1. What Data Mining Is
- 1.2. What Data Mining Is Not
- 1.3. Case for Data Mining
- 1.4. Types of Data Mining
- 1.5. Data Mining Algorithms
- 1.6. Roadmap for Upcoming Chapters
- 2.1. Prior Knowledge
- 2.2. Data Preparation
- 2.3. Modeling
- 2.4. Application
- 2.5. Knowledge
- 3.1. Objectives of Data Exploration
- 3.2. Data Sets
- 3.3. Descriptive Statistics
- 3.4. Data Visualization
- 3.5. Roadmap for Data Exploration
- 4.1. Decision Trees
- 4.2. Rule Induction
- 4.3. k-Nearest Neighbors
- 4.4. Naïve Bayesian
- 4.5. Artificial Neural Networks
- 4.6. Support Vector Machines
- 4.7. Ensemble Learners
- 5.1. Linear Regression
- 5.2. Logistic Regression
- 6.1. Concepts of Mining Association Rules
- 6.2. Apriori Algorithm
- 6.3. FP-Growth Algorithm
- 7.1. Types of Clustering Techniques
- 7.2. k-Means Clustering
- 7.3. DBSCAN Clustering
- 7.4. Self-Organizing Maps
- 8.1. Confusion Matrix (or Truth Table)
- 8.2. Receiver Operator Characteristic (ROC) Curves and Area under the Curve (AUC)
- 8.3. Lift Curves
- 8.4. Evaluating the Predictions: Implementation
- 9.1. How Text Mining Works
- 9.2. Implementing Text Mining with Clustering and Classification
- 10.1. Data-Driven Approaches
- 10.2. Model-Driven Forecasting Methods
- 11.1. Anomaly Detection Concepts
- 11.2. Distance-Based Outlier Detection
- 11.3. Density-Based Outlier Detection
- 11.4. Local Outlier Factor
- 12.1. Classifying Feature Selection Methods
- 12.2. Principal Component Analysis
- 12.3. Information Theory-Based Filtering for Numeric Data
- 12.4. Chi-Square-Based Filtering for Categorical Data
- 12.5. Wrapper-Type Feature Selection
- 13.1. User Interface and Terminology
- 13.2. Data Importing and Exporting Tools
- 13.3. Data Visualization Tools
- 13.4. Data Transformation Tools
- 13.5. Sampling and Missing Value Tools
- 13.6. Optimization Tools.