Predictive analytics and data mining : concepts and practice with RapidMiner /
This book shows how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Topics include: exploratory data analysis; visualization; decision trees; rule induction; k-nearest neighbors; naive Bayesian; artificial neural networks; support vector machine...
| Clasificación: | Libro Electrónico |
|---|---|
| Autores principales: | , |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Waltham, MA :
Morgan Kaufmann,
[2015]
|
| Temas: | |
| Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
| Sumario: | This book shows how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Topics include: exploratory data analysis; visualization; decision trees; rule induction; k-nearest neighbors; naive Bayesian; artificial neural networks; support vector machines; ensemble models; bagging; boosting; random forests; linear regression; logistic regression; association analysis using Apriori and FP growth; k-means clustering; density based clustering; self organizing maps; text mining; time series forecasting; anomaly detection and feature selection. -- |
|---|---|
| Descripción Física: | 1 online resource 1 online resource (1 volume) : illustrations |
| Bibliografía: | Includes bibliographical references and index. |
| ISBN: | 9780128016503 0128016507 0128014601 9780128014608 |


