Cargando…

Practical machine learning : innovations in recommendation /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dunning, Ted, 1956-
Otros Autores: Friedman, B. Ellen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, ©2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn893098175
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 141016s2014 caua ob 000 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d UKMGB  |d DEBBG  |d DEBSZ  |d COO  |d CUS  |d REB  |d OCLCQ  |d FEM  |d OCLCQ  |d OCLCF  |d CEF  |d UAB  |d AU@  |d STF  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 016898640  |2 Uk 
019 |a 968038564  |a 969036773 
020 |a 1491915382 
020 |a 9781491915387 
020 |a 9781491915707 
020 |a 1491915706 
020 |a 9781491915714 
020 |a 1491915714 
020 |z 9781491915387 
029 1 |a DEBBG  |b BV042182859 
029 1 |a DEBSZ  |b 417235496 
029 1 |a GBVCP  |b 882734938 
035 |a (OCoLC)893098175  |z (OCoLC)968038564  |z (OCoLC)969036773 
037 |a CL0500000491  |b Safari Books Online 
050 4 |a Q325.5  |b .D866 2014 
082 0 4 |a 006.31  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Dunning, Ted,  |d 1956- 
245 1 0 |a Practical machine learning :  |b innovations in recommendation /  |c Ted Dunning, Ellen Friedman. 
260 |a Sebastopol, CA :  |b O'Reilly Media,  |c ©2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
520 8 |a Annotation  |b Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settingsand demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. Youll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time. Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actionsrather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Development. 
650 0 |a Machine learning  |v Case studies. 
650 6 |a Apprentissage automatique  |x Développement. 
650 6 |a Apprentissage automatique  |v Études de cas. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 7 |a Case studies.  |2 fast  |0 (OCoLC)fst01423765 
700 1 |a Friedman, B. Ellen. 
776 0 8 |i Print version:  |a Dunning, Ted.  |t Practical machine learning.  |b First edition  |w (OCoLC)891382178 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491915707/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP