|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn877564736 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140417s2014 nju ob 001 0 eng |
010 |
|
|
|a 2014007300
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d YDX
|d EBLCP
|d CUS
|d YDXCP
|d N$T
|d IDEBK
|d DEBSZ
|d DG1
|d OCLCF
|d CDX
|d RECBK
|d COO
|d B24X7
|d S4S
|d E7B
|d UMI
|d DEBBG
|d OCLCQ
|d OCLCO
|d COD
|d OCLCQ
|d OCLCO
|d COCUF
|d DG1
|d OCLCQ
|d Z5A
|d LIP
|d PIFBY
|d ZCU
|d LIV
|d MERUC
|d OCLCQ
|d U3W
|d MERER
|d OCLCQ
|d UUM
|d STF
|d CEF
|d CRU
|d VTS
|d ICG
|d OCLCQ
|d INT
|d OCLCQ
|d TKN
|d OCLCQ
|d UAB
|d DKC
|d OCLCQ
|d ERF
|d OCLCQ
|d UKAHL
|d OCLCQ
|d BRF
|d UKBTH
|d VT2
|d ELBRO
|d OCLCO
|d SGP
|d OCLCQ
|
019 |
|
|
|a 891384241
|a 904769495
|a 910990965
|a 961577388
|a 962610919
|a 1053507388
|a 1148089574
|a 1159605917
|
020 |
|
|
|a 9781118593370
|q (pdf)
|
020 |
|
|
|a 1118593375
|q (pdf)
|
020 |
|
|
|a 9781118593363
|q (epub)
|
020 |
|
|
|a 1118593367
|q (epub)
|
020 |
|
|
|a 9781118593233
|
020 |
|
|
|a 1118593235
|
020 |
|
|
|a 1118422546
|q (hardback)
|
020 |
|
|
|a 9781118422540
|q (hardback)
|
020 |
|
|
|a 9781322007595
|q (MyiLibrary)
|
020 |
|
|
|a 1322007594
|q (MyiLibrary)
|
020 |
|
|
|z 9781118422540
|q (hardback)
|
024 |
8 |
|
|a 9781118593363
|
029 |
1 |
|
|a AU@
|b 000066260806
|
029 |
1 |
|
|a CHBIS
|b 010442103
|
029 |
1 |
|
|a CHNEW
|b 000696704
|
029 |
1 |
|
|a CHNEW
|b 000696705
|
029 |
1 |
|
|a CHNEW
|b 000888009
|
029 |
1 |
|
|a CHNEW
|b 000943018
|
029 |
1 |
|
|a CHVBK
|b 480254222
|
029 |
1 |
|
|a DEBBG
|b BV042682794
|
029 |
1 |
|
|a DEBBG
|b BV043396696
|
029 |
1 |
|
|a DEBBG
|b BV044069035
|
029 |
1 |
|
|a DEBSZ
|b 409837857
|
029 |
1 |
|
|a DEBSZ
|b 425888452
|
029 |
1 |
|
|a DEBSZ
|b 431710643
|
029 |
1 |
|
|a DEBSZ
|b 446579955
|
029 |
1 |
|
|a DEBSZ
|b 449434966
|
029 |
1 |
|
|a DEBSZ
|b 485047594
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999931491105765
|
029 |
1 |
|
|a NZ1
|b 15753448
|
029 |
1 |
|
|a NZ1
|b 15906976
|
029 |
1 |
|
|a NZ1
|b 15952792
|
035 |
|
|
|a (OCoLC)877564736
|z (OCoLC)891384241
|z (OCoLC)904769495
|z (OCoLC)910990965
|z (OCoLC)961577388
|z (OCoLC)962610919
|z (OCoLC)1053507388
|z (OCoLC)1148089574
|z (OCoLC)1159605917
|
037 |
|
|
|a CL0500000567
|b Safari Books Online
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA280
|
072 |
|
7 |
|a REF
|x 018000
|2 bisacsh
|
082 |
0 |
0 |
|a 001.4/2202855133
|2 23
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Derryberry, DeWayne R.,
|e author.
|
245 |
1 |
0 |
|a Basic data analysis for time series with R /
|c DeWayne R. Derryberry, Department of Mathematics and Statistics, Idaho State University, Voise, ID.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b John Wiley & Sons, Inc.,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book. The content includes modern topics such as wavelets, Fourier series, and Akaike's Information Criterion (AIC), which is not typical of current-day "classics." Applications to a variety of scientific fields are showcased. Exercise sets are well crafted with the express intent of supporting pedagogy through recognition and repetition. R subroutines are employed as the software and graphics tool of choice. Brevity is a key component to the retention of the subject matter. The book presumes knowledge of linear algebra, probability, data analysis, and basic computer programming"--
|c Provided by publisher
|
520 |
|
|
|a "This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book"--
|c Provided by publisher
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.
|t R Basics --
|g 1.1.
|t Getting Started, --
|g 1.2.
|t Special R Conventions, --
|g 1.3.
|t Common Structures, --
|g 1.4.
|t Common Functions, --
|g 1.5.
|t Time Series Functions, --
|g 1.6.
|t Importing Data, --
|t Exercises, --
|g 2.
|t Review of Regression and More About R --
|g 2.1.
|t Goals of this Chapter, --
|g 2.2.
|t The Simple(ST) Regression Model, --
|g 2.2.1.
|t Ordinary Least Squares, --
|g 2.2.2.
|t Properties of OLS Estimates, --
|g 2.2.3.
|t Matrix Representation of the Problem, --
|g 2.3.
|t Simulating the Data from a Model and Estimating the Model Parameters in R, --
|g 2.3.1.
|t Simulating Data, --
|g 2.3.2.
|t Estimating the Model Parameters in R, --
|g 2.4.
|t Basic Inference for the Model, --
|g 2.5.
|t Residuals Analysis[2014]What Can Go Wrong, --
|g 2.6.
|t Matrix Manipulation in R, --
|g 2.6.1.
|t Introduction, --
|g 2.6.2.
|t OLS the Hard Way, --
|g 2.6.3.
|t Some Other Matrix Commands, --
|t Exercises, --
|g 3.
|t The Modeling Approach Taken in this Book and Some Examples of Typical Serially Correlated Data --
|g 3.1.
|t Signal and Noise, --
|g 3.2.
|t Time Series Data, --
|g 3.3.
|t Simple Regression in the Framework, --
|g 3.4.
|t Real Data and Simulated Data, --
|g 3.5.
|t The Diversity of Time Series Data, --
|g 3.6.
|t Getting Data Into R, --
|g 3.6.1.
|t Overview, --
|g 3.6.2.
|t The Diskette and the scan() and ts() Functions[2014]New York City Temperatures, --
|g 3.6.3.
|t The Diskette and the read.table() Function[2014]The Semmelweis Data, --
|g 3.6.4.
|t Cut and Paste Data to a Text Editor, --
|t Exercises, --
|g 4.
|t Some Comments on Assumptions --
|g 4.1.
|t Introduction, --
|g 4.2.
|t The Normality Assumption, --
|g 4.2.1.
|t Right Skew, --
|g 4.2.2.
|t Left Skew, --
|g 4.2.3.
|t Heavy Tails, --
|g 4.3.
|t Equal Variance, --
|g 4.3.1.
|t Two-Sample t-Test, --
|g 4.3.2.
|t Regression, --
|g 4.4.
|t Independence, --
|g 4.5.
|t Power of Logarithmic Transformations Illustrated, --
|g 4.6.
|t Summary, --
|t Exercises, --
|g 5.
|t The Autocorrelation Function And AR(1), AR(2) Models --
|g 5.1.
|t Standard Models[2014]What are the Alternatives to White Noise?, --
|g 5.2.
|t Autocovariance and Autocorrelation, --
|g 5.2.1.
|t Stationarity, --
|g 5.2.2.
|t A Note About Conditions, --
|g 5.2.3.
|t Properties of Autocovariance, --
|g 5.2.4.
|t White Noise, --
|g 5.2.5.
|t Estimation of the Autocovariance and Autocorrelation, --
|g 5.3.
|t The acf() Function in R, --
|g 5.3.1.
|t Background, --
|g 5.3.2.
|t The Basic Code for Estimating the Autocovariance, --
|g 5.4.
|t The First Alternative to White Noise: Autoregressive Errors[2014]AR(1), AR(2), --
|g 5.4.1.
|t Definition of the AR(1) and AR(2) Models, --
|g 5.4.2.
|t Some Preliminary Facts, --
|g 5.4.3.
|t The AR(1) Model Autocorrelation and Autocovariance, --
|g 5.4.4.
|t Using Correlation and Scatterplots to Illustrate the AR(1) Model, --
|g 5.4.5.
|t The AR(2) Model Autocorrelation and Autocovariance, --
|g 5.4.6.
|t Simulating Data for AR(m) Models, --
|g 5.4.7.
|t Examples of Stable and Unstable AR(1) Models, --
|g 5.4.8.
|t Examples of Stable and Unstable AR(2) Models, --
|t Exercises, --
|g 6.
|t The Moving Average Models MA(1) And MA(2) --
|g 6.1.
|t The Moving Average Model, --
|g 6.2.
|t The Autocorrelation for MA(1) Models, --
|g 6.3.
|t A Duality Between MA(l) And AR(m) Models, --
|g 6.4.
|t The Autocorrelation for MA(2) Models, --
|g 6.5.
|t Simulated Examples of the MA(1) Model, --
|g 6.6.
|t Simulated Examples of the MA(2) Model, --
|g 6.7.
|t AR(m) and MA(l) model acf() Plots, --
|t Exercises, --
|g 7.
|t Review of Transcendental Functions and Complex Numbers --
|g 7.1.
|t Background, --
|g 7.2.
|t Complex Arithmetic, --
|g 7.2.1.
|t The Number i, --
|g 7.2.2.
|t Complex Conjugates, --
|g 7.2.3.
|t The Magnitude of a Complex Number, --
|g 7.3.
|t Some Important Series, --
|g 7.3.1.
|t The Geometric and Some Transcendental Series, --
|g 7.3.2.
|t A Rationale for Euler's Formula, --
|g 7.4.
|t Useful Facts About Periodic Transcendental Functions, --
|t Exercises, --
|g 8.
|t The Power Spectrum and the Periodogram --
|g 8.1.
|t Introduction, --
|g 8.2.
|t A Definition and a Simplified Form for p(f), --
|g 8.3.
|t Inverting p(f) to Recover the Ck Values, --
|g 8.4.
|t The Power Spectrum for Some Familiar Models, --
|g 8.4.1.
|t White Noise, --
|g 8.4.2.
|t The Spectrum for AR(1) Models, --
|g 8.4.3.
|t The Spectrum for AR(2) Models, --
|g 8.5.
|t The Periodogram, a Closer Look, --
|g 8:5.1.
|t Why is the Periodogram Useful?, --
|g 8.5.2.
|t Some Naive Code for a Periodogram, --
|g 8.5.3.
|t An Example[2014]The Sunspot Data, --
|g 8.6.
|t The Function spec.pgram() in R, --
|t Exercises, --
|g 9.
|t Smoothers, The Bias-Variance Tradeoff, and the Smoothed Periodogram --
|g 9.1.
|t Why is Smoothing Required?, --
|g 9.2.
|t Smoothing, Bias, and Variance, --
|g 9.3.
|t Smoothers Used in R, --
|g 9.3.1.
|t The R Function lowess(), --
|g 9.3.2.
|t The R Function smooth.spline(), --
|g 9.3.3.
|t Kernel Smoothers in spec.pgram(), --
|g 9.4.
|t Smoothing the Periodogram for a Series With a Known and Unknown Period, --
|g 9.4.1.
|t Period Known, --
|g 9.4.2.
|t Period Unknown, --
|g 9.5.
|t Summary, --
|t Exercises, --
|g 10.
|t A Regression Model for Periodic Data --
|g 10.1.
|t The Model,
|
505 |
0 |
0 |
|g 10.2.
|t An Example: The NYC Temperature Data, --
|g 10.2.1.
|t Fitting a Periodic Function, --
|g 10.2.2.
|t An Outlier, --
|g 10.2.3.
|t Refitting the Model with the Outlier Corrected, --
|g 10.3.
|t Complications 1: CO2 Data, --
|g 10.4.
|t Complications 2: Sunspot Numbers, --
|g 10.5.
|t Complications 3: Accidental Deaths, --
|g 10.6.
|t Summary, --
|t Exercises, --
|g 11.
|t Model Selection and Cross-Validation --
|g 11.1.
|t Background, --
|g 11.2.
|t Hypothesis Tests in Simple Regression, --
|g 11.3.
|t A More General Setting for Likelihood Ratio Tests, --
|g 11.4.
|t A Subtlety Different Situation, --
|g 11.5.
|t Information Criteria, --
|g 11.6.
|t Cross-validation (Data Splitting): NYC Temperatures, --
|g 11.6.1.
|t Explained Variation, R2, --
|g 11.6.2.
|t Data Splitting, --
|g 11.6.3.
|t Leave-One-Out Cross-Validation, --
|g 11.6.4.
|t AIC as Leave-One-Out Cross-Validation, --
|g 11.7.
|t Summary, --
|t Exercises, --
|g 12.
|t Fitting Fourier series --
|g 12.1.
|t Introduction: More Complex Periodic Models, --
|g 12.2.
|t More Complex Periodic Behavior: Accidental Deaths, --
|g 12.2.1.
|t Fourier Series Structure, --
|g 12.2.2.
|t R Code for Fitting Large Fourier Series, --
|g 12.2.3.
|t Model Selection with AIC, --
|g 12.2.4.
|t Model Selection with Likelihood Ratio Tests, --
|g 12.2.5.
|t Data Splitting, --
|g 12.2.6.
|t Accidental Deaths[2014]Some Comment on Periodic Data, --
|g 12.3.
|t The Boise River Flow data, --
|g 12.3.1.
|t The Data, --
|g 12.3.2.
|t Model Selection with AIC, --
|g 12.3.3.
|t Data Splitting, --
|g 12.3.4.
|t The Residuals, --
|g 12.4.
|t Where Do We Go from Here?, --
|t Exercises, --
|g 13.
|t Adjusting for AR(1) Correlation in Complex Models --
|g 13.1.
|t Introduction, --
|g 13.2.
|t The Two-Sample t-Test[2014]UNCUT and Patch-Cut Forest, --
|g 13.2.1.
|t The Sleuth Data and the Question of Interest, --
|g 13.2.2.
|t A Simple Adjustment for t-Tests When the Residuals Are AR(1), --
|g 13.2.3.
|t A Simulation Example, --
|g 13.2.4.
|t Analysis of the Sleuth Data, --
|g 13.3.
|t The Second Sleuth Case[2014]Global Warming, A Simple Regression, --
|g 13.3.1.
|t The Data and the Question, --
|g 13.3.2.
|t Filtering to Produce (Quasi- )Independent Observations, --
|g 13.3.3.
|t Simulated Example[2014]Regression, --
|g 13.3.4.
|t Analysis of the Regression Case, --
|g 13.3.5.
|t The Filtering Approach for the Logging Case, --
|g 13.3.6.
|t A Few Comments on Filtering, --
|g 13.4.
|t The Semmelweis Intervention, --
|g 13.4.1.
|t The Data, --
|g 13.4.2.
|t Why Serial Correlation?, --
|g 13.4.3.
|t How This Data Differs from the Patch/Uncut Case, --
|g 13.4.4.
|t Filtered Analysis, --
|g 13.4.5.
|t Transformations and Inference, --
|g 13.5.
|t The NYC Temperatures (Adjusted), --
|g 13.5.1.
|t The Data and Prediction Intervals, --
|g 13.5.2.
|t The AR(1) Prediction Model, --
|g 13.5.3.
|t A Simulation to Evaluate These Formulas, --
|g 13.5.4.
|t Application to NYC Data, --
|g 13.6.
|t The Boise River Flow Data: Model Selection With Filtering, --
|g 13.6.1.
|t The Revised Model Selection Problem, --
|g 13.6.2.
|t Comments on R2 and R2pred' --
|g 13.6.3.
|t Model Selection After Filtering with a Matrix, --
|g 13.7.
|t Implications of AR(1) Adjustments and the "Skip" Method, --
|g 13.7.1.
|t Adjustments for AR(1) Autocorrelation, --
|g 13.7.2.
|t Impact of Serial Correlation on p-Values, --
|g 13.7.3.
|t The "skip" Method, --
|g 13.8.
|t Summary, --
|t Exercises, --
|g 14.
|t The Backshift Operator, the Impulse Response Function, and General ARMA Models --
|g 14.1.
|t The General ARMA Model, --
|g 14.1.1.
|t The Mathematical Formulation, --
|g 14.1.2.
|t The arima.sim() Function in R Revisited, --
|g 14.1.3.
|t Examples of ARMA(m, l) Models, --
|g 14.2.
|t The Backshift (Shift, Lag) Operator, --
|g 14.2.1.
|t Definition of B, --
|g 14.2.2.
|t The Stationary Conditions for a General AR(m) Model, --
|g 14.2.3.
|t ARMA(m, l) Models and the Backshift Operator, --
|g 14.2.4.
|t More Examples of ARMA(m, l) Models, --
|g 14.3.
|t The Impulse Response Operator[2014]Intuition, --
|g 14.4.
|t Impulse Response Operator, g(B)[2014]Computation, --
|g 14.4.1.
|t Definition of g(B), --
|g 14.4.2.
|t Computing the Coefficients, --
|g 14.4.3.
|t Plotting an Impulse Response Function, --
|g 14.5.
|t Interpretation and Utility of the Impulse Response Function, --
|t Exercises, --
|g 15.
|t The Yule[2014]Walker Equations and the Partial Autocorrelation Function --
|g 15.1.
|t Background, --
|g 15.2.
|t Autocovariance of an ARMA(m, /) Model, --
|g 15.2.1.
|t A Preliminary Result, --
|g 15.2.2.
|t The Autocovariance Function for ARMA(m, /) Models, --
|g 15.3.
|t AR(m) and the Yule[2014]Walker Equations, --
|g 15.3.1.
|t The Equations, --
|g 15.3.2.
|t The R Function aryw() with an AR(3) Example, --
|g 15.3.3.
|t Information Criteria-Based Model Selection Using aryw(), --
|g 15.4.
|t The Partial Autocorrelation Plot, --
|g 15.4.1.
|t A Sequence of Hypothesis Tests, --
|g 15.4.2.
|t The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --
|g 15.5.
|t The Spectrum For Arma Processes, --
|g 15.6.
|t Summary, --
|t Exercises, --
|g 16.
|t Modeling Philosophy and Complete Examples --
|g 16.1.
|t Modeling Overview, --
|g 16.1.1.
|t The Algorithm,
|
505 |
0 |
0 |
|g Note continued:
|g 16.1.2.
|t The Underlying Assumption, --
|g 16.1.3.
|t An Example Using an AR(m) Filter to Model MA(3), --
|g 16.1.4.
|t Generalizing the "Skip" Method, --
|g 16.2.
|t A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --
|g 16.2.1.
|t The Data, --
|g 16.2.2.
|t A Saturated Model, --
|g 16.2.3.
|t Building an AR(m) Filtering Matrix, --
|g 16.2.4.
|t Model Selection, --
|g 16.2.5.
|t Predictions and Prediction Intervals for an AR(3) Model, --
|g 16.2.6.
|t Data Splitting, --
|g 16.2.7.
|t Model Selection Based on a Validation Set, --
|g 16.3.
|t A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --
|g 16.3.1.
|t The Saturated Model and Filter, --
|g 16.3.2.
|t Model Selection, --
|g 16.3.3.
|t How Well Does the Model Fit the Data?, --
|g 16.4.
|t Modeling Periodicity with a Possible Intervention[2014]Two Examples, --
|g 16.4.1.
|t The General Structure, --
|g 16.4.2.
|t Directory Assistance, --
|g 16.4.3.
|t Ozone Levels in Los Angeles, --
|g 14.5.
|t Interpretation and Utility of the Impulse Response Function, --
|t Exercises, --
|g 15.
|t The Yule[2014]Walker Equations and the Partial Autocorrelation Function --
|g 15.1.
|t Background, --
|g 15.2.
|t Autocovariance of an ARMA(m, l) Model, --
|g 15.2.1.
|t A Preliminary Result, --
|g 15.2.2.
|t The Autocovariance Function for ARMA(m, /) Models, --
|g 15.3.
|t AR(m) and the Yule[2014]Walker Equations, --
|g 15.3.1.
|t The Equations, --
|g 15.3.2.
|t The R Function ar.yw() with an AR(3) Example, --
|g 15.3.3.
|t Information Criteria-Based Model Selection Using ar.yw(), --
|g 15.4.
|t The Partial Autocorrelation Plot, --
|g 15.4.1.
|t A Sequence of Hypothesis Tests, --
|g 15.4.2.
|t The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --
|g 15.5.
|t The Spectrum For Arma Processes, --
|g 15.6.
|t Summary, --
|t Exercises, --
|g 16.
|t Modeling Philosophy and Complete Examples --
|g 16.1.
|t Modeling Overview, --
|g 16.1.1.
|t The Algorithm, --
|g 16.1.2.
|t The Underlying Assumption, --
|g 16.1.3.
|t An Example Using an AR(m) Filter to Model MA(3), --
|g 16.1.4.
|t Generalizing the "Skip" Method, --
|g 16.2.
|t A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --
|g 16.2.1.
|t The Data, --
|g 16.2.2.
|t A Saturated Model, --
|g 16.2.3.
|t Building an AR(m) Filtering Matrix, --
|g 16.2.4.
|t Model Selection, --
|g 16.2.5.
|t Predictions and Prediction Intervals for an AR(3) Model, --
|g 16.2.6.
|t Data Splitting, --
|g 16.2.7.
|t Model Selection Based on a Validation Set, --
|g 16.3.
|t A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --
|g 16.3.1.
|t The Saturated Model and Filter, --
|g 16.3.2.
|t Model Selection, --
|g 16.3.3.
|t How Well Does the Model Fit the Data?, --
|g 16.4.
|t Modeling Periodicity with a Possible Intervention[2014]Two Examples, --
|g 16.4.1.
|t The General Structure, --
|g 16.4.2.
|t Directory Assistance, --
|g 16.4.3.
|t Ozone Levels in Los Angeles, --
|g 16.5.
|t Periodic Models: Monthly, Weekly, and Daily Averages, --
|g 16.6.
|t Summary, --
|t Exercises, --
|g 17.
|t Wolf's Sunspot Number Data --
|g 17.1.
|t Background, --
|g 17.2.
|t Unknown Period -> Nonlinear Model, --
|g 17.3.
|t The Function nls() in R, --
|g 17.4.
|t Determining the Period, --
|g 17.5.
|t Instability in the Mean, Amplitude, and Period, --
|g 17.6.
|t Data Splitting for Prediction, --
|g 17.6.1.
|t The Approach, --
|g 17.6.2.
|t Step 1-Fitting One Step Ahead, --
|g 17.6.3.
|t The AR Correction, --
|g 17.6.4.
|t Putting it All Together, --
|g 17.6.5.
|t Model Selection, --
|g 17.6.6.
|t Predictions Two Steps Ahead, --
|g 17.7.
|t Summary, --
|t Exercises, --
|g 18.
|t An Analysis of Some Prostate and Breast Cancer Data --
|g 18.1.
|t Background, --
|g 18.2.
|t The First Data Set, --
|g 18.3.
|t The Second Data Set, --
|g 18.3.1.
|t Background and Questions, --
|g 18.3.2.
|t Outline of the Statistical Analysis, --
|g 18.3.3.
|t Looking at the Data, --
|g 18.3.4.
|t Examining the Residuals for AR(m) Structure, --
|g 18.3.5.
|t Regression Analysis with Filtered Data, --
|t Exercises, --
|g 19.
|t Christopher Tennant/Ben Crosby Watershed Data --
|g 19.1.
|t Background and Question, --
|g 19.2.
|t Looking at the Data and Fitting Fourier Series, --
|g 19.2.1.
|t The Structure of the Data, --
|g 19.2.2.
|t Fourier Series Fits to the Data, --
|g 19.2.3.
|t Connecting Patterns in Data to Physical Processes, --
|g 19.3.
|t Averaging Data, --
|g 19.4.
|t Results, --
|t Exercises, --
|g 20.
|t Vostok Ice Core Data --
|g 20.1.
|t Source of the Data, --
|g 20.2.
|t Background, --
|g 20.3.
|t Alignment, --
|g 20.3.1.
|t Need for Alignment, and Possible Issues Resulting from Alignment, --
|g 20.3.2.
|t Is the Pattern in the Temperature Data Maintained?, --
|g 20.3.3.
|t Are the Dates Closely Matched?, --
|g 20.3.4.
|t Are the Times Equally Spaced?, --
|g 20.4.
|t A Naïve Analysis, --
|g 20.4.1.
|t A Saturated Model, --
|g 20.4.2.
|t Model Selection, --
|g 20.4.3.
|t The Association Between CO2 and Temperature Change, --
|g 20.5.
|t A Related Simulation, --
|g 20.5.1.
|t The Model and the Question of Interest, --
|g 20.5.2.
|t Simulation Code in R, --
|g 20.5.3.
|t A Model Using all of the Simulated Data, --
|g 20.5.4.
|t A Model Using a Sample of 283 from the Simulated Data, --
|g 20.6.
|t An AR(1) Model for Irregular Spacing, --
|g 20.6.1.
|t Motivation, --
|g 20.6.2.
|t Method, --
|g 20.6.3.
|t Results, --
|g 20.6.4.
|t Sensitivity Analysis, --
|g 20.6.5.
|t A Final Analysis, Well Not Quite, --
|g 20.7.
|t Summary, --
|t Exercises, --
|g A.1.
|t Overview, --
|g A.2.
|t Loading a Time Series in Datamarket, --
|g A.3.
|t Respecting Datamarket Licensing Agreements, --
|g B.1.
|t Introduction, --
|g B.2.
|t PRESS, --
|g B.3.
|t Connection to Akaike's Result, --
|g B.4.
|t Normalization and R2, --
|g B.5.
|t An example, --
|g B.6.
|t Conclusion and Further Comments, --
|g C.1.
|t Introduction, --
|g C.2.
|t Newton's Method for One-Dimensional Nonlinear Optimization, --
|g C.3.
|t A Sequence of Directions, Step Sizes, and a Stopping Rule, --
|g C.4.
|t What Could Go Wrong?, --
|g C.5.
|t Generalizing the Optimization Problem, --
|g C.6.
|t What Could Go Wrong[2014]Revisited, --
|g C.7.
|t What Can be Done?
|
542 |
|
|
|f Copyright © John Wiley & Sons
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Time-series analysis
|x Data processing.
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
6 |
|a Série chronologique
|x Informatique.
|
650 |
|
6 |
|a R (Langage de programmation)
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|0 (OCoLC)fst01086207
|
650 |
|
7 |
|a Time-series analysis
|x Data processing.
|2 fast
|0 (OCoLC)fst01151192
|
650 |
|
7 |
|a Anàlisi de sèries temporals.
|2 thub
|
650 |
|
7 |
|a Processament de dades.
|2 thub
|
650 |
|
7 |
|a R (Llenguatge de programació)
|2 thub
|
655 |
|
7 |
|a Llibres electrònics.
|2 thub
|
776 |
0 |
8 |
|i Print version:
|a Derryberry, DeWayne R.
|t Basic data analysis for time series with R.
|d Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
|z 9781118422540
|w (DLC) 2014007300
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781118593363/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26860136
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00063461
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 28705837
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1719581
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10899801
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 817454
|
938 |
|
|
|a eLibro
|b ELBO
|n ELB178735
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28705837
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00582635
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12010999
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11072113
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11949762
|
994 |
|
|
|a 92
|b IZTAP
|