|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn842323326 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130503s2013 enk ob 001 0 eng |
010 |
|
|
|a 2013018390
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d YDX
|d DG1
|d IDEBK
|d CUS
|d N$T
|d YDXCP
|d B24X7
|d OCLCF
|d DEBSZ
|d UMI
|d EBLCP
|d OCLCQ
|d DEBBG
|d DG1
|d LIP
|d OCLCQ
|d K6U
|d SAV
|d OCLCQ
|d COCUF
|d INT
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d U3W
|d OCLCQ
|d UAB
|d OCLCQ
|d C6I
|d OCLCQ
|d UKCRE
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 900652435
|a 992825831
|a 1148151474
|
020 |
|
|
|a 9781119973492
|q (epub)
|
020 |
|
|
|a 111997349X
|q (epub)
|
020 |
|
|
|a 9781119973485
|q (pdf)
|
020 |
|
|
|a 1119973481
|q (pdf)
|
020 |
|
|
|a 9781119973508
|q (mobipocket)
|
020 |
|
|
|a 1119973503
|q (mobipocket)
|
020 |
|
|
|a 9781119973515
|q (electronic bk.)
|
020 |
|
|
|a 1119973511
|q (electronic bk.)
|
020 |
|
|
|a 1299804853
|
020 |
|
|
|a 9781299804852
|
020 |
|
|
|a 1119971918
|
020 |
|
|
|a 9781119971917
|
020 |
|
|
|z 9781119971917
|q (cloth/website)
|
029 |
1 |
|
|a CHNEW
|b 000941773
|
029 |
1 |
|
|a CHVBK
|b 480220506
|
029 |
1 |
|
|a DEBBG
|b BV041573551
|
029 |
1 |
|
|a DEBBG
|b BV041907386
|
029 |
1 |
|
|a DEBBG
|b BV043395816
|
029 |
1 |
|
|a DEBSZ
|b 423136372
|
029 |
1 |
|
|a DEBSZ
|b 428125182
|
029 |
1 |
|
|a NZ1
|b 15341901
|
029 |
1 |
|
|a NZ1
|b 15905511
|
029 |
1 |
|
|a AU@
|b 000062436782
|
029 |
1 |
|
|a AU@
|b 000066260807
|
035 |
|
|
|a (OCoLC)842323326
|z (OCoLC)900652435
|z (OCoLC)992825831
|z (OCoLC)1148151474
|
037 |
|
|
|a CL0500000538
|b Safari Books Online
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a HG106
|
072 |
|
7 |
|a BUS
|x 027000
|2 bisacsh
|
082 |
0 |
0 |
|a 332.01/51
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Aichinger, Michael,
|d 1979-
|
245 |
1 |
2 |
|a A workout in computational finance /
|c Michael Aichinger and Andreas Binder.
|
264 |
|
1 |
|a Chichester, West Sussex, United Kingdom :
|b Wiley,
|c [2013]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
|
|6 880-01
|a A Workout in Computational Finance; Contents; Acknowledgements; About the Authors; 1 Introduction and Reading Guide; 2 Binomial Trees; 2.1 Equities and Basic Options; 2.2 The One Period Model; 2.3 The Multiperiod Binomial Model; 2.4 Black-Scholes and Trees; 2.5 Strengths and Weaknesses of Binomial Trees; 2.5.1 Ease of Implementation; 2.5.2 Oscillations; 2.5.3 Non-recombining Trees; 2.5.4 Exotic Options and Trees; 2.5.5 Greeks and Binomial Trees; 2.5.6 Grid Adaptivity and Trees; 2.6 Conclusion; 3 Finite Differences and the Black-Scholes PDE; 3.1 A Continuous Time Model for Equity Prices.
|
505 |
8 |
|
|a 3.2 Black-Scholes Model: From the SDE to the PDE3.3 Finite Differences; 3.4 Time Discretization; 3.5 Stability Considerations; 3.6 Finite Differences and the Heat Equation; 3.6.1 Numerical Results; 3.7 Appendix: Error Analysis; 4 Mean Reversion and Trinomial Trees; 4.1 Some Fixed Income Terms; 4.1.1 Interest Rates and Compounding; 4.1.2 Libor Rates and Vanilla Interest Rate Swaps; 4.2 Black76 for Caps and Swaptions; 4.3 One-Factor Short Rate Models; 4.3.1 Prominent Short Rate Models; 4.4 The Hull-White Model in More Detail; 4.5 Trinomial Trees; 5 Upwinding Techniques for Short Rate Models.
|
505 |
8 |
|
|a 5.1 Derivation of a PDE for Short Rate Models5.2 Upwind Schemes; 5.2.1 Model Equation; 5.3 A Puttable Fixed Rate Bond under the Hull-White One Factor Model; 5.3.1 Bond Details; 5.3.2 Model Details; 5.3.3 Numerical Method; 5.3.4 An Algorithm in Pseudocode; 5.3.5 Results; 6 Boundary, Terminal and Interface Conditions and their Influence; 6.1 Terminal Conditions for Equity Options; 6.2 Terminal Conditions for Fixed Income Instruments; 6.3 Callability and Bermudan Options; 6.4 Dividends; 6.5 Snowballs and TARNs; 6.6 Boundary Conditions.
|
505 |
8 |
|
|a 6.6.1 Double Barrier Options and Dirichlet Boundary Conditions6.6.2 Artificial Boundary Conditions and the Neumann Case; 7 Finite Element Methods; 7.1 Introduction; 7.1.1 Weighted Residual Methods; 7.1.2 Basic Steps; 7.2 Grid Generation; 7.3 Elements; 7.3.1 1D Elements; 7.3.2 2D Elements; 7.4 The Assembling Process; 7.4.1 Element Matrices; 7.4.2 Time Discretization; 7.4.3 Global Matrices; 7.4.4 Boundary Conditions; 7.4.5 Application of the Finite Element Method to Convection-Diffusion-Reaction Problems; 7.5 A Zero Coupon Bond Under the Two Factor Hull-White Model.
|
505 |
8 |
|
|a 7.6 Appendix: Higher Order Elements7.6.1 3D Elements; 7.6.2 Local and Natural Coordinates; 8 Solving Systems of Linear Equations; 8.1 Direct Methods; 8.1.1 Gaussian Elimination; 8.1.2 Thomas Algorithm; 8.1.3 LU Decomposition; 8.1.4 Cholesky Decomposition; 8.2 Iterative Solvers; 8.2.1 Matrix Decomposition; 8.2.2 Krylov Methods; 8.2.3 Multigrid Solvers; 8.2.4 Preconditioning; 9 Monte Carlo Simulation; 9.1 The Principles of Monte Carlo Integration; 9.2 Pricing Derivatives with Monte Carlo Methods; 9.2.1 Discretizing the Stochastic Differential Equation; 9.2.2 Pricing Formalism.
|
520 |
|
|
|a A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and ca.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Finance
|x Mathematical models.
|
650 |
|
6 |
|a Finances
|x Modèles mathématiques.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Finance.
|2 bisacsh
|
650 |
|
7 |
|a Finance
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Binder, Andreas,
|d 1964-
|
776 |
0 |
8 |
|i Print version:
|a Aichinger, Michael, 1979-
|t Workout in computational finance.
|d Hoboken, N.J. : John Wiley & Sons, Inc., [2013]
|z 9781119971917
|w (DLC) 2013017386
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781119971917/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Introduction and Reading Guide --
|g 2.
|t Binomial Trees --
|g 2.1.
|t Equities and Basic Options --
|g 2.2.
|t One Period Model --
|g 2.3.
|t Multiperiod Binomial Model --
|g 2.4.
|t Black-Scholes and Trees --
|g 2.5.
|t Strengths and Weaknesses of Binomial Trees --
|g 2.5.1.
|t Ease of Implementation --
|g 2.5.2.
|t Oscillations --
|g 2.5.3.
|t Non-recombining Trees --
|g 2.5.4.
|t Exotic Options and Trees --
|g 2.5.5.
|t Greeks and Binomial Trees --
|g 2.5.6.
|t Grid Adaptivity and Trees --
|g 2.6.
|t Conclusion --
|g 3.
|t Finite Differences and the Black-Scholes PDE --
|g 3.1.
|t Continuous Time Model for Equity Prices --
|g 3.2.
|t Black-Scholes Model: From the SDE to the PDE --
|g 3.3.
|t Finite Differences --
|g 3.4.
|t Time Discretization --
|g 3.5.
|t Stability Considerations --
|g 3.6.
|t Finite Differences and the Heat Equation --
|g 3.6.1.
|t Numerical Results --
|g 3.7.
|t Appendix: Error Analysis --
|g 4.
|t Mean Reversion and Trinomial Trees --
|g 4.1.
|t Some Fixed Income Terms --
|g 4.1.1.
|t Interest Rates and Compounding --
|g 4.1.2.
|t Libor Rates and Vanilla Interest Rate Swaps --
|g 4.2.
|t Black76 for Caps and Swaptions --
|g 4.3.
|t One-Factor Short Rate Models --
|g 4.3.1.
|t Prominent Short Rate Models --
|g 4.4.
|t Hull-White Model in More Detail --
|g 4.5.
|t Trinomial Trees --
|g 5.
|t Upwinding Techniques for Short Rate Models --
|g 5.1.
|t Derivation of a PDE for Short Rate Models --
|g 5.2.
|t Upwind Schemes --
|g 5.2.1.
|t Model Equation --
|g 5.3.
|t Puttable Fixed Rate Bond under the Hull-White One Factor Model --
|g 5.3.1.
|t Bond Details --
|g 5.3.2.
|t Model Details --
|g 5.3.3.
|t Numerical Method --
|g 5.3.4.
|t Algorithm in Pseudocode --
|g 5.3.5.
|t Results --
|g 6.
|t Boundary, Terminal and Interface Conditions and their Influence --
|g 6.1.
|t Terminal Conditions for Equity Options --
|g 6.2.
|t Terminal Conditions for Fixed Income Instruments --
|g 6.3.
|t Callability and Bermudan Options --
|g 6.4.
|t Dividends --
|g 6.5.
|t Snowballs and TARNs --
|g 6.6.
|t Boundary Conditions --
|g 6.6.1.
|t Double Barrier Options and Dirichlet Boundary Conditions --
|g 6.6.2.
|t Artificial Boundary Conditions and the Neumann Case --
|g 7.
|t Finite Element Methods --
|g 7.1.
|t Introduction --
|g 7.1.1.
|t Weighted Residual Methods --
|g 7.1.2.
|t Basic Steps --
|g 7.2.
|t Grid Generation --
|g 7.3.
|t Elements --
|g 7.3.1.
|t 1D Elements --
|g 7.3.2.
|t 2D Elements --
|g 7.4.
|t Assembling Process --
|g 7.4.1.
|t Element Matrices --
|g 7.4.2.
|t Time Discretization --
|g 7.4.3.
|t Global Matrices --
|g 7.4.4.
|t Boundary Conditions --
|g 7.4.5.
|t Application of the Finite Element Method to Convection-Diffusion-Reaction Problems --
|g 7.5.
|t Zero Coupon Bond Under the Two Factor Hull-White Model --
|g 7.6.
|t Appendix: Higher Order Elements --
|g 7.6.1.
|t 3D Elements --
|g 7.6.2.
|t Local and Natural Coordinates --
|g 8.
|t Solving Systems of Linear Equations --
|g 8.1.
|t Direct Methods --
|g 8.1.1.
|t Gaussian Elimination --
|g 8.1.2.
|t Thomas Algorithm --
|g 8.1.3.
|t LU Decomposition --
|g 8.1.4.
|t Cholesky Decomposition --
|g 8.2.
|t Iterative Solvers --
|g 8.2.1.
|t Matrix Decomposition --
|g 8.2.2.
|t Krylov Methods --
|g 8.2.3.
|t Multigrid Solvers --
|g 8.2.4.
|t Preconditioning --
|g 9.
|t Monte Carlo Simulation --
|g 9.1.
|t Principles of Monte Carlo Integration --
|g 9.2.
|t Pricing Derivatives with Monte Carlo Methods --
|g 9.2.1.
|t Discretizing the Stochastic Differential Equation --
|g 9.2.2.
|t Pricing Formalism --
|g 9.2.3.
|t Valuation of a Steepener under a Two Factor Hull-White Model --
|g 9.3.
|t Introduction to the Libor Market Model --
|g 9.4.
|t Random Number Generation --
|g 9.4.1.
|t Properties of a Random Number Generator --
|g 9.4.2.
|t Uniform Variates --
|g 9.4.3.
|t Random Vectors --
|g 9.4.4.
|t Recent Developments in Random Number Generation --
|g 9.4.5.
|t Transforming Variables --
|g 9.4.6.
|t Random Number Generation for Commonly Used Distributions --
|g 10.
|t Advanced Monte Carlo Techniques --
|g 10.1.
|t Variance Reduction Techniques --
|g 10.1.1.
|t Antithetic Variates --
|g 10.1.2.
|t Control Variates --
|g 10.1.3.
|t Conditioning --
|g 10.1.4.
|t Additional Techniques for Variance Reduction --
|g 10.2.
|t Quasi Monte Carlo Method --
|g 10.2.1.
|t Low-Discrepancy Sequences --
|g 10.2.2.
|t Randomizing QMC --
|g 10.3.
|t Brownian Bridge Technique --
|g 10.3.1.
|t Steepener under a Libor Market Model --
|g 11.
|t Valuation of Financial Instruments with Embedded American/Bermudan Options within Monte Carlo Frameworks --
|g 11.1.
|t Pricing American options using the Longstaff and Schwartz algorithm --
|g 11.2.
|t Modified Least Squares Monte Carlo Algorithm for Bermudan Callable Interest Rate Instruments --
|g 11.2.1.
|t Algorithm: Extended LSMC Method for Bermudan Options --
|g 11.2.2.
|t Notes on Basis Functions and Regression --
|g 11.3.
|t Examples --
|g 11.3.1.
|t Bermudan Callable Floater under Different Short-rate Models --
|g 11.3.2.
|t Bermudan Callable Steepener Swap under a Two Factor Hull-White Model --
|g 11.3.3.
|t Bermudan Callable Steepener Cross Currency Swap in a 3D IR/FX Model Framework --
|g 12.
|t Characteristic Function Methods for Option Pricing --
|g 12.1.
|t Equity Models --
|g 12.1.1.
|t Heston Model --
|g 12.1.2.
|t Jump Diffusion Models --
|g 12.1.3.
|t Infinite Activity Models --
|g 12.1.4.
|t Bates Model --
|g 12.2.
|t Fourier Techniques --
|g 12.2.1.
|t Fast Fourier Transform Methods --
|g 12.2.2.
|t Fourier-Cosine Expansion Methods --
|g 13.
|t Numerical Methods for the Solution of PIDEs --
|g 13.1.
|t PIDE for Jump Models --
|g 13.2.
|t Numerical Solution of the PIDE --
|g 13.2.1.
|t Discretization of the Spatial Domain --
|g 13.2.2.
|t Discretization of the Time Domain --
|g 13.2.3.
|t European Option under the Kou Jump Diffusion Model --
|g 13.3.
|t Appendix: Numerical Integration via Newton-Cotes Formulae --
|g 14.
|t Copulas and the Pitfalls of Correlation --
|g 14.1.
|t Correlation --
|g 14.1.1.
|t Pearson's/ρ --
|g 14.1.2.
|t Spearman's ρ --
|g 14.1.3.
|t Kendall's τ --
|g 14.1.4.
|t Other Measures --
|g 14.2.
|t Copulas --
|g 14.2.1.
|t Basic Concepts --
|g 14.2.2.
|t Important Copula Functions --
|g 14.2.3.
|t Parameter estimation and sampling --
|g 14.2.4.
|t Default Probabilities for Credit Derivatives --
|g 15.
|t Parameter Calibration and Inverse Problems --
|g 15.1.
|t Implied Black-Scholes Volatilities --
|g 15.2.
|t Calibration Problems for Yield Curves --
|g 15.3.
|t Reversion Speed and Volatility --
|g 15.4.
|t Local Volatility --
|g 15.4.1.
|t Dupire's Inversion Formula --
|g 15.4.2.
|t Identifying Local Volatility --
|g 15.4.3.
|t Results --
|g 15.5.
|t Identifying Parameters in Volatility Models --
|g 15.5.1.
|t Model Calibration for the FTSE-100 --
|g 16.
|t Optimization Techniques --
|g 16.1.
|t Model Calibration and Optimization --
|g 16.1.1.
|t Gradient-Based Algorithms for Nonlinear Least Squares Problems --
|g 16.2.
|t Heuristically Inspired Algorithms --
|g 16.2.1.
|t Simulated Annealing --
|g 16.2.2.
|t Differential Evolution --
|g 16.3.
|t Hybrid Algorithm for Heston Model Calibration --
|g 16.4.
|t Portfolio Optimization --
|g 17.
|t Risk Management --
|g 17.1.
|t Value at Risk and Expected Shortfall --
|g 17.1.1.
|t Parametric VaR --
|g 17.1.2.
|t Historical VaR --
|g 17.1.3.
|t Monte Carlo VaR --
|g 17.1.4.
|t Individual and Contribution VaR --
|g 17.2.
|t Principal Component Analysis --
|g 17.2.1.
|t Principal Component Analysis for Non-scalar Risk Factors --
|g 17.2.2.
|t Principal Components for Fast Valuation --
|g 17.3.
|t Extreme Value Theory --
|g 18.
|t Quantitative Finance on Parallel Architectures --
|g 18.1.
|t Short Introduction to Parallel Computing --
|g 18.2.
|t Different Levels of Parallelization --
|g 18.3.
|t GPU Programming --
|g 18.3.1.
|t CUDA and OpenCL --
|g 18.3.2.
|t Memory --
|g 18.4.
|t Parallelization of Single Instrument Valuations using (Q)MC --
|g 18.5.
|t Parallelization of Hybrid Calibration Algorithms --
|g 18.5.1.
|t Implementation Details --
|g 18.5.2.
|t Results --
|g 19.
|t Building Large Software Systems for the Financial Industry.
|
938 |
|
|
|a Books 24x7
|b B247
|n bkf00056224
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4043447
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 632408
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26034081
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9985251
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12674135
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11082454
|
994 |
|
|
|a 92
|b IZTAP
|