Loading…

Semiconductor laser engineering, reliability and diagnostics : a practical approach to high power and single mode devices /

"This reference book provides a fully integrated novel approach to the development of high power, single transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering (Part 1), reliability engineering (Part 2) and device diagnostics (Part 3) in the sam...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Epperlein, Peter W.
Format: Electronic eBook
Language:Inglés
Published: Chichester, West Sussex, U.K. : John Wiley & Sons Inc., 2013.
Subjects:
Online Access:Texto completo (Requiere registro previo con correo institucional)
Table of Contents:
  • Semiconductor Laser Engineering, Reliability and Diagnostics; Contents; Preface; About the author; PART 1 DIODE LASER ENGINEERING; Overview; 1 Basic diode laser engineering principles; Introduction; 1.1 Brief recapitulation; 1.1.1 Key features of a diode laser; 1.1.1.1 Carrier population inversion; 1.1.1.2 Net gain mechanism; 1.1.1.3 Optical resonator; 1.1.1.4 Transverse vertical confinement; 1.1.1.5 Transverse lateral confinement; 1.1.2 Homojunction diode laser; 1.1.3 Double-heterostructure diode laser; 1.1.4 Quantum well diode laser.
  • 1.1.4.1 Advantages of quantum well heterostructures for diode lasersWavelength adjustment and tunability; Strained quantum well lasers; Optical power supply; Temperature characteristics; 1.1.5 Common compounds for semiconductor lasers; 1.2 Optical output power
  • diverse aspects; 1.2.1 Approaches to high-power diode lasers; 1.2.1.1 Edge-emitters; 1.2.1.2 Surface-emitters; 1.2.2 High optical power considerations; 1.2.2.1 Laser brightness; 1.2.2.2 Laser beam quality factor M2; 1.2.3 Power limitations; 1.2.3.1 Kinks; 1.2.3.2 Rollover; 1.2.3.3 Catastrophic optical damage; 1.2.3.4 Aging.
  • 1.3.4.3 Cavity length dependence1.3.4.4 Active layer thickness dependence; 1.3.5 Transverse vertical and transverse lateral modes; 1.3.5.1 Vertical confinement structures
  • summary; Double-heterostructure; Single quantum well; Strained quantum well; Separate confinement heterostructure SCH and graded-index SCH (GRIN-SCH); Multiple quantum well (MQW); 1.3.5.2 Lateral confinement structures; Gain-guiding concept and key features; Weakly index-guiding concept and key features; Strongly index-guiding concept and key features; 1.3.5.3 Near-field and far-field pattern.
  • 1.3.6 Fabry-Pérot longitudinal modes1.3.7 Operating characteristics; 1.3.7.1 Optical output power and efficiency; 1.3.7.2 Internal efficiency and optical loss measurements; 1.3.7.3 Temperature dependence of laser characteristics; 1.3.8 Mirror reflectivity modifications; 1.4 Laser fabrication technology; 1.4.1 Laser wafer growth; 1.4.1.1 Substrate specifications and preparation; 1.4.1.2 Substrate loading; 1.4.1.3 Growth; 1.4.2 Laser wafer processing; 1.4.2.1 Ridge waveguide etching and embedding; 1.4.2.2 The p-type electrode; 1.4.2.3 Ridge waveguide protection.