Cargando…

Machine learning for email /

If you're an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You'll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles Whi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Conway, Drew
Otros Autores: White, John Myles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly, ©2012.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn778357024
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120227s2012 caua ob 000 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d CUS  |d COO  |d N$T  |d OCLCQ  |d YDXCP  |d WAU  |d DEBSZ  |d TEFOD  |d UPM  |d NLE  |d TEFOD  |d OCLCQ  |d FEM  |d OCLCA  |d OCLCQ  |d OCLCF  |d BRL  |d CEF  |d UAB  |d AU@  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 859863962  |a 968073427  |a 968984095 
020 |a 9781449320713  |q (electronic bk.) 
020 |a 1449320716  |q (electronic bk.) 
020 |a 9781449320706  |q (electronic bk.) 
020 |a 1449320708  |q (electronic bk.) 
020 |z 9781449314309  |q (pbk.) 
020 |z 1449314309  |q (pbk.) 
029 1 |a DEBBG  |b BV040901638 
029 1 |a DEBSZ  |b 378289888 
029 1 |a DEBSZ  |b 381376788 
029 1 |a DKDLA  |b 820050-katalog:9920606754305762 
035 |a (OCoLC)778357024  |z (OCoLC)859863962  |z (OCoLC)968073427  |z (OCoLC)968984095 
037 |a EDCB53F1-244C-471F-83F9-C3DE9FBD13A7  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a TK5105.73  |b .C66 2012eb 
072 7 |a COM  |x 084020  |2 bisacsh 
072 7 |a COM  |x 020020  |2 bisacsh 
082 0 4 |a 004.692  |2 23 
049 |a UAMI 
100 1 |a Conway, Drew. 
245 1 0 |a Machine learning for email /  |c Drew Conway and John Myles White. 
250 |a 1st ed. 
260 |a Sebastopol, CA :  |b O'Reilly,  |c ©2012. 
300 |a 1 online resource (xi, 130 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
504 |a Includes bibliographical references (pages 129-130). 
588 0 |a Print version record. 
505 0 |a Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration vs. Confirmation -- What is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Modes -- Skewness -- Thin Tails vs. Heavy Tails -- Visualizing the Relationships between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority -- Priority Features Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker. 
520 |a If you're an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You'll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You'll get clear examples for analyzing sample data and writing machine learning programs with R. Mine email content with R functions, using a collection of sample files Analyze the data and use the results to write a Bayesian spam classifier Rank email by importance, using factors such as thread activity Use your email ranking analysis to write a priority inbox program Test your classifier and priority inbox with a separate email sample set. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Electronic mail messages  |x Management. 
650 0 |a Electronic mail systems. 
650 0 |a Spam (Electronic mail)  |x Prevention. 
650 0 |a Spam filtering (Electronic mail) 
650 0 |a Machine learning. 
650 2 |a Electronic Mail 
650 6 |a Courrier électronique  |x Gestion. 
650 6 |a Courrier électronique. 
650 6 |a Pourriels  |x Filtrage. 
650 6 |a Apprentissage automatique. 
650 7 |a electronic mail.  |2 aat 
650 7 |a COMPUTERS  |x Desktop Applications  |x Email Clients.  |2 bisacsh 
650 7 |a COMPUTERS  |x System Administration  |x Email Administration.  |2 bisacsh 
650 7 |a Electronic mail systems.  |2 fast  |0 (OCoLC)fst00907333 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Spam filtering (Electronic mail)  |2 fast  |0 (OCoLC)fst01737477 
700 1 |a White, John Myles. 
776 0 8 |i Print version:  |a Conway, Drew.  |t Machine learning for email.  |b 1st ed.  |d Sebastopol, CA : O'Reilly, ©2012  |z 9781449314309  |w (OCoLC)754719988 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449314835/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847680 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847681 
938 |a EBSCOhost  |b EBSC  |n 415503 
938 |a YBP Library Services  |b YANK  |n 7269329 
938 |a YBP Library Services  |b YANK  |n 9523376 
994 |a 92  |b IZTAP