Cargando…

Advances in Lignocellulosic Biofuel Production Systems.

Detalles Bibliográficos
Autor principal: Moodley, Preshanthan
Otros Autores: Ray, Ramesh C., Gueguim Kana, Evariste B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology, 2023.
Colección:Applied Biotechnology Reviews Series
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Advances in Lignocellulosic Biofuel Production Systems
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • I. Introduction
  • 1 Current status of lignocellulosic biofuel production system-an overview
  • 1.1 Introduction
  • 1.2 Lignocellulosic biomass: an ideal candidate feedstock for biofuels
  • 1.2.1 Pretreatment
  • 1.2.2 Bioethanol
  • 1.2.3 Biohydrogen
  • 1.2.4 Sustainable aviation fuel
  • 1.2.5 Biogas
  • 1.3 Biorefineries
  • 1.4 Genetic engineering of feedstocks and fermenting microorganisms
  • 1.5 Artificial intelligence in biofuel production
  • 1.6 Bioreactor configuration for enhanced biofuel processes
  • 1.7 Current status of global energy recovery from lignocelluloses
  • 1.8 Conclusion and future perspectives
  • References
  • II. Feedstock &amp
  • processing
  • 2 Lignocellulosic biomass: A feedstock to support the circular economy
  • 2.1 Introduction
  • 2.2 Types and composition of lignocellulosic biomass
  • 2.3 Pretreatment strategies for the lignocellulosic biomass conversion as a feedstock for biofuel production
  • 2.3.1 Physical pretreatment
  • 2.3.2 Chemical pretreatment
  • 2.3.3 Biological pretreatment
  • 2.3.4 Physicochemical pretreatment
  • 2.3.5 Advanced methods in feedstock pretreatment
  • 2.4 Current insights into the conversion of lignocellulosic biomass as a feedstock for biofuel production
  • 2.5 Link of lignocellulosic biomass with circular economy
  • 2.6 Conclusions and future prospects
  • Abbreviations
  • References
  • 3 Genetically engineered lignocellulosic feedstocks for enhanced biofuel yields
  • 3.1 Introduction
  • 3.2 Lignocellulose ethanol production
  • 3.3 Key traits to increasing lignocellulosic biomass production and yield
  • 3.4 Genetic engineering strategies to modify plant biomass properties
  • 3.4.1 Changing the structure and content of lignin in the cell.
  • 3.4.2 The increasing cellulose content in biomass
  • 3.4.3 Hemicellulose biosynthesis and engineering
  • 3.4.4 Cellulase enzymes for enzymatic hydrolysis
  • 3.4.5 Pectin biosynthesis and modification
  • 3.4.6 Yeast fermentation step
  • 3.5 Genetic modification through CRISPR-Cas9 technology
  • 3.6 Conclusions and future perspectives
  • Abbreviations
  • References
  • 4 Pretreatment technologies for lignocellulosic biomass refineries
  • 4.1 Introduction
  • 4.2 Bioprocessing schemes of lignocellulosic biomass
  • 4.3 Pretreatment of lignocellulosic biomass
  • 4.3.1 Physical pretreatments
  • 4.3.2 Chemical pretreatments
  • 4.3.2.1 Acid pretreatment
  • 4.3.2.2 Alkaline pretreatment
  • 4.3.2.3 Organic solvent pretreatment
  • 4.3.2.4 Ionic liquid pretreatment
  • 4.3.3 Physicochemical pretreatments
  • 4.3.3.1 Steam explosion
  • 4.3.3.2 Ammonia fiber explosion
  • 4.3.3.3 Microwave-assisted pretreatment
  • 4.3.4 Biological pretreatment
  • 4.4 Recent advancements in the pretreatment
  • 4.5 Challenges in the commercialization of pretreatment technologies
  • 4.6 Conclusion and future perspectives
  • References
  • 5 Application of microwave energy in the processing of lignocellulosic biomass
  • 5.1 Introduction
  • 5.2 Microwave-assisted thermochemical conversion-gasification and pyrolysis
  • 5.3 Microwave-assisted biological conversion
  • 5.4 Microwave-assisted extraction of high-value compounds
  • 5.5 Factors affecting efficiency of microwave-assisted biomass processing
  • 5.6 Summary and conclusion
  • Abbreviations
  • References
  • 6 Cellulosic-based enzymes for enhanced saccharification for biofuel production
  • 6.1 Introduction
  • 6.2 Cellulase and hydrolysis mechanism
  • 6.3 Pretreatment techniques
  • 6.3.1 Physical/mechanical methods
  • 6.3.2 Physiochemical method
  • 6.3.3 Chemical method
  • 6.3.4 Biological method
  • 6.3.5 Enzyme testing.
  • 8.4.4.3 Scanning electron microscope analysis of switch grass treated by water and acid mine drainage before and after enzy...
  • 8.4.5 Enzymatic hydrolysis of acid mine drainage treated and untreated switch grass
  • 8.5 Discussion and conclusion
  • References
  • III. Recent trends in bioprocessing
  • 9 Metabolic engineering of microorganisms in advancing biofuel production
  • 9.1 Introduction
  • 9.2 Overview of metabolic pathways of microorganisms for biofuels
  • 9.3 Metabolic engineering of microorganisms for biofuel production
  • 9.3.1 Metabolic engineering of bacteria for biofuel production
  • 9.3.2 Metabolic engineering of cyanobacteria for biofuel production
  • 9.3.3 Metabolic engineering fungi for biofuel production
  • 9.3.4 Metabolic engineering of yeast for biofuel production
  • 9.4 Cell surface display engineering of microorganisms for biofuel production
  • 9.5 Conclusion and future prospects
  • References
  • 10 Lignocellulosic biofuel production: Insight into microbial factories
  • 10.1 Introduction
  • 10.2 Lignocellulosic biomass and pretreatment
  • 10.3 Microbial fermentation and process types
  • 10.4 Kinetic modeling for bioprocess development
  • 10.5 Lignocellulosic biofuel production
  • 10.5.1 Bioethanol
  • 10.5.2 Biobutanol
  • 10.5.3 Biohydrogen
  • 10.5.4 Biogas
  • 10.6 Current challenges of lignocellulosic biofuel production
  • 10.7 Advancements in lignocellulosic biofuel production
  • 10.8 Conclusion and future perspectives
  • Abbreviations
  • References
  • 11 Cell immobilization strategies to enhance yield of liquid biofuels
  • 11.1 Introduction
  • 11.2 Biofuels from lignocellulosic biomass
  • 11.3 Immobilization methods/techniques
  • 11.3.1 Entrapment/encapsulation
  • 11.3.2 Physical adsorption
  • 11.3.3 Covalent binding
  • 11.3.4 Cross-linking
  • 11.4 Immobilized bioprocess components
  • 11.4.1 Immobilization of whole cells.
  • 11.4.2 Immobilization of enzymes
  • 11.4.3 Substrates for immobilization
  • 11.4.4 Immobilized bioreactor system
  • 11.5 Production of sustainable biofuels
  • 11.5.1 Bioethanol
  • 11.5.2 Biodiesel
  • 11.5.3 Biohydrogen
  • 11.5.4 Biobutanol
  • 11.6 Life cycle analysis of liquid biofuels using immobilization techniques
  • 11.7 Patents, commercial applications, and research gaps
  • 11.7.1 Patents
  • 11.7.2 Commercial applications
  • 11.7.3 Research gaps
  • 11.8 Conclusion and future perspectives
  • References
  • IV. Advances in modeling and development
  • 12 Artificial intelligence as a tool for yield prediction in biofuel production systems
  • 12.1 Introduction
  • 12.2 Machine learning in biofuel production systems
  • 12.2.1 Biological processes
  • 12.2.2 Thermochemical processes
  • 12.3 Artificial intelligence employment in lignocellulosic biomass pretreatment
  • 12.4 Artificial intelligence employment in pretreatment inhibitor profile analysis
  • 12.5 Impact of artificial intelligence on lignocellulosic biofuel production systems
  • 12.6 Conclusions and future perspectives
  • Abbreviations
  • References
  • 13 Integrated biorefineries: The path forward
  • 13.1 Introduction
  • 13.2 Feedstocks for biorefineries
  • 13.2.1 Lignocellulosic substrates
  • 13.2.2 Lignocellulose-starch substrates
  • 13.3 Overview of pretreatment
  • 13.4 Pretreatment selection criteria for microbial-derived products in biorefineries
  • 13.5 Microbial fermentation
  • 13.6 Lignocellulosic fermentation process type
  • 13.6.1 Separate hydrolysis and fermentation
  • 13.6.2 Simultaneous saccharification and fermentation
  • 13.6.3 Simultaneous saccharification and fermentation with a prehydrolysis step
  • 13.7 Lignocellulosic biofuel production
  • 13.7.1 Bioethanol
  • 13.7.2 Biohydrogen
  • 13.7.3 Biogas
  • 13.8 Microbial high-value products from lignocellulosic biomass.