|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
KNOVEL_on1381093095 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230501s2023 xx o 000 0 eng|d |
040 |
|
|
|a AU@
|b eng
|e rda
|c AU@
|d DXU
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9780323913447
|q electronic bk
|
020 |
|
|
|a 032391344X
|
020 |
|
|
|z 9780323911924
|
029 |
0 |
|
|a AU@
|b 000074362175
|
029 |
1 |
|
|a AU@
|b 000074384651
|
035 |
|
|
|a (OCoLC)1381093095
|
082 |
0 |
4 |
|a 662.88
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Moodley, Preshanthan.
|
245 |
1 |
0 |
|a Advances in Lignocellulosic Biofuel Production Systems.
|
264 |
|
1 |
|a San Diego :
|b Elsevier Science & Technology,
|c 2023.
|
264 |
|
4 |
|c ©2023.
|
300 |
|
|
|a 1 online resource (505 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Applied Biotechnology Reviews Series
|
500 |
|
|
|a 13.8.1 Lactic acid.
|
505 |
0 |
|
|a Front Cover -- Advances in Lignocellulosic Biofuel Production Systems -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Introduction -- 1 Current status of lignocellulosic biofuel production system-an overview -- 1.1 Introduction -- 1.2 Lignocellulosic biomass: an ideal candidate feedstock for biofuels -- 1.2.1 Pretreatment -- 1.2.2 Bioethanol -- 1.2.3 Biohydrogen -- 1.2.4 Sustainable aviation fuel -- 1.2.5 Biogas -- 1.3 Biorefineries -- 1.4 Genetic engineering of feedstocks and fermenting microorganisms -- 1.5 Artificial intelligence in biofuel production -- 1.6 Bioreactor configuration for enhanced biofuel processes -- 1.7 Current status of global energy recovery from lignocelluloses -- 1.8 Conclusion and future perspectives -- References -- II. Feedstock & -- processing -- 2 Lignocellulosic biomass: A feedstock to support the circular economy -- 2.1 Introduction -- 2.2 Types and composition of lignocellulosic biomass -- 2.3 Pretreatment strategies for the lignocellulosic biomass conversion as a feedstock for biofuel production -- 2.3.1 Physical pretreatment -- 2.3.2 Chemical pretreatment -- 2.3.3 Biological pretreatment -- 2.3.4 Physicochemical pretreatment -- 2.3.5 Advanced methods in feedstock pretreatment -- 2.4 Current insights into the conversion of lignocellulosic biomass as a feedstock for biofuel production -- 2.5 Link of lignocellulosic biomass with circular economy -- 2.6 Conclusions and future prospects -- Abbreviations -- References -- 3 Genetically engineered lignocellulosic feedstocks for enhanced biofuel yields -- 3.1 Introduction -- 3.2 Lignocellulose ethanol production -- 3.3 Key traits to increasing lignocellulosic biomass production and yield -- 3.4 Genetic engineering strategies to modify plant biomass properties -- 3.4.1 Changing the structure and content of lignin in the cell.
|
505 |
8 |
|
|a 3.4.2 The increasing cellulose content in biomass -- 3.4.3 Hemicellulose biosynthesis and engineering -- 3.4.4 Cellulase enzymes for enzymatic hydrolysis -- 3.4.5 Pectin biosynthesis and modification -- 3.4.6 Yeast fermentation step -- 3.5 Genetic modification through CRISPR-Cas9 technology -- 3.6 Conclusions and future perspectives -- Abbreviations -- References -- 4 Pretreatment technologies for lignocellulosic biomass refineries -- 4.1 Introduction -- 4.2 Bioprocessing schemes of lignocellulosic biomass -- 4.3 Pretreatment of lignocellulosic biomass -- 4.3.1 Physical pretreatments -- 4.3.2 Chemical pretreatments -- 4.3.2.1 Acid pretreatment -- 4.3.2.2 Alkaline pretreatment -- 4.3.2.3 Organic solvent pretreatment -- 4.3.2.4 Ionic liquid pretreatment -- 4.3.3 Physicochemical pretreatments -- 4.3.3.1 Steam explosion -- 4.3.3.2 Ammonia fiber explosion -- 4.3.3.3 Microwave-assisted pretreatment -- 4.3.4 Biological pretreatment -- 4.4 Recent advancements in the pretreatment -- 4.5 Challenges in the commercialization of pretreatment technologies -- 4.6 Conclusion and future perspectives -- References -- 5 Application of microwave energy in the processing of lignocellulosic biomass -- 5.1 Introduction -- 5.2 Microwave-assisted thermochemical conversion-gasification and pyrolysis -- 5.3 Microwave-assisted biological conversion -- 5.4 Microwave-assisted extraction of high-value compounds -- 5.5 Factors affecting efficiency of microwave-assisted biomass processing -- 5.6 Summary and conclusion -- Abbreviations -- References -- 6 Cellulosic-based enzymes for enhanced saccharification for biofuel production -- 6.1 Introduction -- 6.2 Cellulase and hydrolysis mechanism -- 6.3 Pretreatment techniques -- 6.3.1 Physical/mechanical methods -- 6.3.2 Physiochemical method -- 6.3.3 Chemical method -- 6.3.4 Biological method -- 6.3.5 Enzyme testing.
|
505 |
8 |
|
|a 8.4.4.3 Scanning electron microscope analysis of switch grass treated by water and acid mine drainage before and after enzy... -- 8.4.5 Enzymatic hydrolysis of acid mine drainage treated and untreated switch grass -- 8.5 Discussion and conclusion -- References -- III. Recent trends in bioprocessing -- 9 Metabolic engineering of microorganisms in advancing biofuel production -- 9.1 Introduction -- 9.2 Overview of metabolic pathways of microorganisms for biofuels -- 9.3 Metabolic engineering of microorganisms for biofuel production -- 9.3.1 Metabolic engineering of bacteria for biofuel production -- 9.3.2 Metabolic engineering of cyanobacteria for biofuel production -- 9.3.3 Metabolic engineering fungi for biofuel production -- 9.3.4 Metabolic engineering of yeast for biofuel production -- 9.4 Cell surface display engineering of microorganisms for biofuel production -- 9.5 Conclusion and future prospects -- References -- 10 Lignocellulosic biofuel production: Insight into microbial factories -- 10.1 Introduction -- 10.2 Lignocellulosic biomass and pretreatment -- 10.3 Microbial fermentation and process types -- 10.4 Kinetic modeling for bioprocess development -- 10.5 Lignocellulosic biofuel production -- 10.5.1 Bioethanol -- 10.5.2 Biobutanol -- 10.5.3 Biohydrogen -- 10.5.4 Biogas -- 10.6 Current challenges of lignocellulosic biofuel production -- 10.7 Advancements in lignocellulosic biofuel production -- 10.8 Conclusion and future perspectives -- Abbreviations -- References -- 11 Cell immobilization strategies to enhance yield of liquid biofuels -- 11.1 Introduction -- 11.2 Biofuels from lignocellulosic biomass -- 11.3 Immobilization methods/techniques -- 11.3.1 Entrapment/encapsulation -- 11.3.2 Physical adsorption -- 11.3.3 Covalent binding -- 11.3.4 Cross-linking -- 11.4 Immobilized bioprocess components -- 11.4.1 Immobilization of whole cells.
|
505 |
8 |
|
|a 11.4.2 Immobilization of enzymes -- 11.4.3 Substrates for immobilization -- 11.4.4 Immobilized bioreactor system -- 11.5 Production of sustainable biofuels -- 11.5.1 Bioethanol -- 11.5.2 Biodiesel -- 11.5.3 Biohydrogen -- 11.5.4 Biobutanol -- 11.6 Life cycle analysis of liquid biofuels using immobilization techniques -- 11.7 Patents, commercial applications, and research gaps -- 11.7.1 Patents -- 11.7.2 Commercial applications -- 11.7.3 Research gaps -- 11.8 Conclusion and future perspectives -- References -- IV. Advances in modeling and development -- 12 Artificial intelligence as a tool for yield prediction in biofuel production systems -- 12.1 Introduction -- 12.2 Machine learning in biofuel production systems -- 12.2.1 Biological processes -- 12.2.2 Thermochemical processes -- 12.3 Artificial intelligence employment in lignocellulosic biomass pretreatment -- 12.4 Artificial intelligence employment in pretreatment inhibitor profile analysis -- 12.5 Impact of artificial intelligence on lignocellulosic biofuel production systems -- 12.6 Conclusions and future perspectives -- Abbreviations -- References -- 13 Integrated biorefineries: The path forward -- 13.1 Introduction -- 13.2 Feedstocks for biorefineries -- 13.2.1 Lignocellulosic substrates -- 13.2.2 Lignocellulose-starch substrates -- 13.3 Overview of pretreatment -- 13.4 Pretreatment selection criteria for microbial-derived products in biorefineries -- 13.5 Microbial fermentation -- 13.6 Lignocellulosic fermentation process type -- 13.6.1 Separate hydrolysis and fermentation -- 13.6.2 Simultaneous saccharification and fermentation -- 13.6.3 Simultaneous saccharification and fermentation with a prehydrolysis step -- 13.7 Lignocellulosic biofuel production -- 13.7.1 Bioethanol -- 13.7.2 Biohydrogen -- 13.7.3 Biogas -- 13.8 Microbial high-value products from lignocellulosic biomass.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources
|
590 |
|
|
|a Knovel
|b ACADEMIC - Sustainable Energy & Development
|
590 |
|
|
|a Knovel
|b ACADEMIC - Food Science
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
700 |
1 |
|
|a Ray, Ramesh C.
|
700 |
1 |
|
|a Gueguim Kana, Evariste B.
|
776 |
0 |
8 |
|i Print version
|a Moodley, Preshanthan
|t Advances in Lignocellulosic Biofuel Production Systems
|d San Diego : Elsevier Science & Technology,c2023
|z 9780323911924
|
830 |
|
0 |
|a Applied Biotechnology Reviews Series
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpALBPS001/toc
|z Texto completo
|
880 |
8 |
|
|6 505-00
|a 6.3.5.1 Testing for endoglucanases -- 6.3.5.2 Testing for exoglucanases activity -- 6.3.5.3 Total cellulase assay -- 6.4 Improvement in cellulase strategies -- 6.5 Directed evolution -- 6.6 Rational design/rational protein design approach -- 6.7 Synthetic biology in microbial cellulase production -- 6.8 Lignocellulosic bioethanol and its economics -- 6.9 Patents and commercial applications -- 6.10 Conclusion and future perspectives -- Acknowledgments -- Abbreviations -- References -- Further reading -- 7 Role of accessory enzymes and proteins in efficient biomass hydrolysis -- 7.1 Introduction -- 7.2 Types of accessory enzyme -- 7.2.1 Auxiliary active enzyme -- 7.2.2 Hemicellulolytic enzymes -- 7.2.3 Carbohydrate esterases -- 7.2.3.1 Feruloyl esterases -- 7.2.3.2 Acetyl xylan esterases -- 7.2.3.3 Glucuronoyl esterases -- 7.2.3.4 α-l-Arabinofuranosidases -- 7.2.3.5 Pectinase -- 7.2.4 Noncatalytic proteins -- 7.2.5 Accessory enzymes for lignin degradation -- 7.3 Enzyme engineering for accessory enzyme development -- 7.3.1 Xylanase -- 7.3.2 β-Glucosidase -- 7.4 Industrial applications of accessory enzymes -- 7.5 Summary and conclusion -- Abbreviations -- References -- 8 Fermentable sugars as bioprocessing feedstocks from lignocellulosic biomass pretreated with acid mine drainage -- 8.1 Introduction -- 8.2 Acid mine drainage: an overview -- 8.3 Lignocellulose and biofuels -- 8.4 Case study: the utilization of acid mine drainage for the pretreatment of lignocellulosic biomass and the subsequent re... -- 8.4.1 Lignocellulose biomass -- 8.4.2 Enzyme -- 8.4.3 Methodology -- 8.4.3.1 Pretreatment of lignocellulose -- 8.4.3.2 Determination of glucose -- 8.4.3.3 Enzyme hydrolysis -- 8.4.4 Results -- 8.4.4.1 Dissolved iron and pH changes -- 8.4.4.2 The release of glucose during the treatment of acid mine drainage using milled switch grass (≤2mm).
|
994 |
|
|
|a 92
|b IZTAP
|