Cargando…

Battery management systems and inductive balancing /

This book addresses practical approaches to managing batteries to ensure their reliability and longevity. Batteries are key to the energy transition, for both stationary and mobile applications, but their inner workings must be understood in order to ensure effective management.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bossche, Alex van den, Moghaddam, Ali Farzan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage, Herts, United Kingdom : Published by The Institution of Engineering and Technology, 2021.
Colección:IET energy engineering series ; 198.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title
  • Copyright
  • Contents
  • About the authors
  • Preface
  • Acknowledgements
  • Summary
  • Abbreviations
  • Part I Introduction to batteries and balancing
  • Chapter 1 Introduction to batteries
  • 1.1 Preface
  • 1.2 History of the battery
  • 1.3 Introduction of the battery
  • 1.4 Lithium-based batteries
  • 1.5 Charging and discharging
  • 1.6 Chemistry
  • 1.7 Charging methods
  • 1.8 Characteristics
  • 1.9 Application areas
  • Summary
  • References
  • Appendix A: Open-circuit voltage (OCV)
  • Chapter 2 Discussion about batteries
  • 2.1 Introduction
  • 2.2 Are minerals available?
  • 2.2.1 Lead-acid batteries
  • 2.2.2 Lithium-ion batteries
  • 2.3 Life extension
  • 2.4 Reuse or second life
  • 2.5 Recycling
  • 2.6 CO2 emission to produce a kWh of battery storage
  • 2.6.1 Lead-acid and CO2
  • 2.6.2 Lithium ion and CO2
  • 2.7 Avoiding battery storage
  • 2.7.1 Water heaters
  • 2.7.2 Storing cold
  • 2.7.3 Direct use of solar PV
  • 2.7.4 Flywheel storage
  • 2.7.5 Gravity storage
  • 2.7.6 Compressed air
  • 2.7.7 Seasonal storage
  • Summary
  • References
  • Chapter 3 Overview of battery types
  • 3.1 Introduction
  • 3.2 Overview of actual types
  • 3.3 Batteries with water-based electrolytes
  • 3.3.1 Lead-acid
  • 3.3.2 Nickel-metal hydride NiMH
  • 3.3.3 Salt water battery
  • 3.3.4 Rechargeable alkaline battery
  • 3.4 Organic electrolyte-based batteries
  • 3.4.1 Lithium family
  • 3.4.2 Li-ion battery characteristic
  • 3.4.3 Lithium-iron-phosphate characteristic LiFePO4
  • 3.4.4 Lithium metal batteries
  • 3.4.5 Sodium-, potassium-, magnesium-, calcium-, zinc-, and aluminium-based batteries
  • 3.5 Molten salt batteries
  • 3.6 Fuel cells
  • 3.6.1 Low-temperature fuel cells LTFC
  • 3.6.2 High-temperature fuel cells HTFC
  • 3.7 Flow battery systems
  • 3.8 Nernst and electrochemical potential
  • Summary
  • References
  • Chapter 4 Purpose of BMS, state of charge, state of health
  • 4.1 State of charge, state of health, and state of power
  • 4.1.1 State of charge
  • 4.1.2 State of health
  • 4.1.3 State of power
  • 4.2 Sophisticated SoH modelling by BMS
  • 4.3 Battery management system
  • 4.4 Battery configuration
  • 4.5 Types of battery management systems
  • 4.5.1 One cell too low, one cell too high principle
  • 4.5.2 Shunt resistor switching balancing (passive)
  • 4.5.3 Capacitive shunting balancing (active)
  • 4.5.4 Inductor balancing (active)
  • 4.5.5 Transformer balancing (active)
  • 4.5.6 Cuk converter balancing (active)
  • 4.5.7 Flyback converter balancing (active)
  • 4.5.8 Forward converter balancing (active)
  • Summary
  • References
  • Part II Passive cell balancing circuits
  • Chapter 5 A smart high-voltage cell detecting and equalizing
  • 5.1 Introduction
  • 5.2 Possible technologies
  • Section 1: High-voltage cell detecting and equalizing circuit
  • 5.3 Proposed smart high-voltage cell equalizing detection
  • 5.4 Practical implementation
  • 5.5 Experimental results
  • 5.6 Communication between battery and charger via Bluetooth.