ReRAM-based machine learning /
Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML de...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Institution of Engineering & Technology
2021
|
Colección: | IET computing series ;
39 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Acronyms
- Preface
- About the authors
- Part I. Introduction
- 1 Introduction
- 1.1 Introduction
- 1.1.1 Memory wall and powerwall
- 1.1.2 Semiconductor memory
- 1.1.2.1 Memory technologies
- 1.1.2.2 Nanoscale limitations
- 1.1.3 Nonvolatile IMC architecture
- 1.2 Challenges and contributions
- 1.3 Book organization
- 2 The need of in-memory computing
- 2.1 Introduction
- 2.2 Neuromorphic computing devices
- 2.2.1 Resistive random-access memory
- 2.2.2 Spin-transfer-torque magnetic random-access memory
- 2.2.3 Phase change memory
- 2.3 Characteristics of NVM devices for neuromorphic computing
- 2.4 IMC architectures for machine learning
- 2.4.1 Operating principles of IMC architectures
- 2.4.1.1 In-macro operating schemes
- 2.4.1.2 Architectures for operating schemes
- 2.4.2 Analog and digitized fashion of IMC
- 2.4.3 Analog IMC
- 2.4.3.1 Analog MAC
- 2.4.3.2 Cascading IMC macros
- 2.4.3.3 Bitcell and array design of analog IMC
- 2.4.3.4 Peripheral circuitry of analog IMC
- 2.4.3.5 Challenges of analog IMC
- 2.4.3.6 Trade-offs of analog IMC devices
- 2.4.4 Digitized IMC
- 2.4.5 Literature review of IMC
- 2.4.5.1 DRAM-based IMCs
- 2.4.5.2 NAND-Flash-based IMCs
- 2.4.5.3 SRAM-based IMCs
- 2.4.5.4 ReRAM-based IMCs
- 2.4.5.5 STT-MRAM-based IMCs
- 2.4.5.6 SOT-MRAM-based IMCs
- 2.5 Analysis of IMC architectures
- 3 The background of ReRAM devices
- 3.1 ReRAM device and SPICE model
- 3.1.1 Drift-type ReRAM device
- 3.1.2 Diffusive-type ReRAM device
- 3.2 ReRAM-crossbar structure
- 3.2.1 Analog and digitized ReRAM crossbar
- 3.2.1.1 Traditional analog ReRAM crossbar
- 3.2.1.2 Digitalized ReRAM crossbar
- 3.2.2 Connection of ReRAM crossbar
- 3.2.2.1 Direct-connected ReRAM
- 3.2.2.2 One-transistor-one-ReRAM
- 3.2.2.3 One-selector-one-ReRAM
- 3.3 ReRAM-based oscillator
- 3.4 Write-in scheme for multibit ReRAM storage
- 3.4.1 ReRAM data storage
- 3.4.2 Multi-threshold resistance for data storage
- 3.4.3 Write and read
- 3.4.3.1 Write-in method
- 3.4.3.2 Readout method
- 3.4.4 Validation
- 3.4.5 Encoding and 3-bit storage
- 3.4.5.1 Exploration of the memristance range
- 3.4.5.2 Uniform input encoding
- 3.4.5.3 Nonuniform encoding
- 3.5 Logic functional units with ReRAM
- 3.5.1 OR gate
- 3.5.2 AND gate
- 3.6 ReRAM for logic operations
- 3.6.1 Simulation settings
- 3.6.2 ReRAM-based circuits
- 3.6.2.1 Logic operations
- 3.6.2.2 Readout circuit
- 3.6.3 ReRAM as a computational unit-cum-memory
- Part II. Machine learning accelerators
- 4 The background of machine learning algorithms
- 4.1 SVM-based machine learning
- 4.2 Single-layer feedforward neural network-based machine learning
- 4.2.1 Single-layer feedforward network
- 4.2.1.1 Feature extraction
- 4.2.1.2 Neural network-based learning
- 4.2.1.3 Incremental LS solver-based learning
- 4.2.2 L2-norm-gradient-based learning
- 4.2.2.1 Multilayer neural network
- 4.2.2.2 Direct-gradient-based L2-norm optimization