Human Factors in Intelligent Vehicles.
Human Factors in Intelligent Vehiclesaddresses issues related to theanalysis of human factors in the design and evaluation of intelligent vehiclesfor a wide spectrum of applications and over different dimensions. Thecontributors cover autonomous vehicles as well as the frameworks for analyzingautoma...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Aalborg :
River Publishers,
2020.
|
Colección: | River Publishers series in transport technology.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Human Factors in Intelligent Vehicles
- Contents
- Preface
- List of Contributors
- List of Figures
- List of Tables
- List of Abbreviations
- 01 Continuous Game Theory Pedestrian Modelling Method for Autonomous Vehicles
- 1.1 Introduction
- 1.2 Related Work
- 1.2.1 Pedestrian Crossing Behaviour
- 1.2.2 Game Theory
- 1.2.3 Pedestrian Tracking
- 1.3 Methods
- 1.3.1 Human Experiment
- 1.3.2 Pedestrian Detection and Tracking
- 1.3.3 Sequential Chicken Model
- 1.3.4 Gaussian Process Parameter Posterior Analysis
- 1.4 Results
- 1.5 Discussion
- Acknowlegdment
- 2.3.4.2 Fixations and DBQ (Part 1 only)
- 2.3.4.3 Fixations and DALI (Part 2 only)
- 2.3.5 Between trust, DBQ and DALI
- 2.3.5.1 Trust and DBQ (Part 1 only)
- 2.3.5.2 Trust and DALI (Part 2 only)
- 2.4 Discussion
- 2.4.1 Fixations
- 2.4.1.1 Fixations and Trust (Parts 1 and 2)
- 2.4.1.2 Fixations and DBQ (Part 1 only)
- 2.4.2 Fixations and DALI (Part 2 only)
- 2.4.3 Between Trust, DBQ and DALI
- 2.4.3.1 Trust and DBQ (Part 1 only)
- 2.4.3.2 Trust and DALI (Part 2 only)
- 2.5 Conclusion
- References
- 03 A CNN Approach for Bidirectional Brainwave Controller for Intelligent Vehicles
- 3.1 Introduction
- 3.1.1 Human Brain
- 3.1.2 Brainwaves Features
- 3.1.3 BCI Research
- 3.2 Setup Overview
- 3.2.1 Brainwave Sensor
- 3.2.2 Vehicle Platform
- 3.3 Methodology
- 3.3.1 Data Reading
- 3.3.2 Data Filtering
- 3.3.3 Input Processing
- 3.3.4 NN Classifier
- 3.3.5 CNN Classifier
- 3.3.5.1 MindNet_1
- 3.3.5.2 MindNet_2
- 3.4 Experimental Works and Results
- 3.4.1 General Classifier
- 3.4.2 Individual Classifier
- 3.4.3 Computational Time
- 3.5 Conclusion and Future Work
- References
- 04 A-RCRAFT Framework for Analysing Automation: Application to SAE J3016 Levels of Driving Automation
- 4.1 Introduction
- 4.2 A Framework for Automation Analysis: A-RCRAFT
- 4.2.1 Allocation of Functions and Tasks
- 4.2.2 Allocation of Resources
- 4.2.3 Allocation of Control Transitions
- 4.2.4 Allocation of Responsibility
- 4.2.5 Allocation of Authority
- 4.3 Qualitative Analysis of SAE J3016 Levels of Driving Automation with A-RCRAFT
- 4.3.1 Scope of the SAE J3016 for the Human Tasks and System Functions
- 4.3.2 Decomposition of Levels of Driving Automation Accordingto A-RCRAFT