Cargando…

Microwave and wireless synthesizers : theory and design /

"This new edition provides a comprehensive review of the original text with the addition of updated text and illustrations. The book is divided into six chapters beginning with Chapter 1 on loop fundamentals, which provides detailed insight into settling time and other characteristics of the lo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rohde, Ulrich L. (Autor), Rubiola, Enrico, 1957- (Autor), Whitaker, Jerry C. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2021.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Author Biography
  • Preface
  • Important Notations
  • Chapter 1 Loop Fundamentals
  • 1-1 Introduction to Linear Loops
  • 1-2 Characteristics of a Loop
  • 1-3 Digital Loops
  • 1-4 Type 1 First-Order Loop
  • 1-5 Type 1 Second-Order Loop
  • 1-6 Type 2 Second-Order Loop
  • 1-6-1 Transient Behavior of Digital Loops Using Tri-state Phase Detectors
  • 1-7 Type 2 Third-Order Loop
  • 1-7-1 Transfer Function of Type 2 Third-Order Loop
  • 1-7-2 FM Noise Suppression
  • 1-8 Higher-Order Loops
  • 1-8-1 Fifth-Order Loop Transient Response
  • 1-9 Digital Loops with Mixers
  • 1-10 Acquisition
  • 1-10-0 Example 1
  • 1-10-1 Pull-in Performance of the Digital Loop
  • 1-10-2 Coarse Steering of the VCO as an Acquisition Aid
  • 1-10-3 Loop Stability
  • References
  • Suggested Reading
  • Chapter 2 ALMOST ALL ABOUT PHASE NOISE
  • 2-1 INTRODUCTION TO PHASE NOISE
  • 2-1-1 The Clock Signal
  • 2-1-2 The Power Spectral Density (PSD)
  • 2-1-3 Basics of Noise
  • 2-1-4 Phase and Frequency Noise
  • 2-2 THE ALLAN VARIANCE AND OTHER TWO-SAMPLE VARIANCES
  • 2-2-1 Frequency Counters
  • 2-2-2 The Two-Sample Variances AVAR, MVAR, and PVAR
  • 2-2-3 Conversion from Spectra to Two-Sample Variances
  • 2-3 PHASE NOISE IN COMPONENTS
  • 2-3-1 Amplifiers
  • 2-3-2 Frequency Dividers
  • 2-3-3 Frequency Multipliers
  • 2-3-4 Direct Digital Synthesizer (DDS)
  • 2-3-5 Phase Detectors
  • 2-3-6 Noise Contribution from Power Supplies
  • 2-4 PHASE NOISE IN OSCILLATORS
  • 2-4-1 Modern View of the Leeson Model
  • 2-4-2 Circumventing the Resonator's Thermal Noise
  • 2-4-3 Oscillator Hacking
  • 2-5 THE MEASUREMENT OF PHASE NOISE
  • 2-5-1 Double-Balanced Mixer Instruments
  • 2-5-2 The Cross-Spectrum Method
  • 2-5-3 Digital Instruments
  • 2-5-4 Pitfalls and Limitations of the Cross-Spectrum Measurements
  • 2-5-5 The Bridge (Interferometric) Method.
  • 2-5-6 Artifacts and Oddities Often Found in the Real World
  • 2-5 References
  • 2-5 SUGGESTED READINGS
  • 2-5-6 Power spectra and Fourier transform
  • 2-5-6 Electromagnetic Compatibility
  • 2-5-6 General Aspects of Noise
  • 2-5-6 Phase Noise, Frequency Stability, and Measurements
  • 2-5-6 Amplifiers
  • 2-5-6 Frequency Dividers
  • 2-5-6 Frequency Multipliers
  • 2-5-6 DDS
  • 2-5-6 Phase-Frequency Detectors
  • 2-5-6 Oscillators
  • 2-5-6 Resonators
  • 2-5-6 Double-Balanced Mixer
  • Chapter 3 Special Loops
  • 3-1 Introduction
  • 3-2 Direct Digital Synthesis Techniques
  • 3-2-1 A First Look at Fractional N
  • 3-2-2 Digital Waveform Synthesizers
  • 3-2-3 Signal Quality
  • 3-2-4 Future Prospects
  • 3-3 Loops with Delay Line as Phase Comparators
  • 3-4 Fractional Division N Synthesizers
  • 3-4-1 Example Implementation
  • 3-4-2 Some Special Past Patents for Fractional Division N Synthesizers
  • References
  • Bibliography
  • FRACTIONAL DIVISION N READINGS
  • Chapter 4 LOOP COMPONENTS
  • 4-1 INTRODUCTION TO OSCILLATORS AND THEIR MATHEMATICAL TREATMENT
  • 4-2 THE COLPITTS OSCILLATOR
  • 4-2-1 Linear Approach
  • 4-2-2 Design Example for a 350 MHz Fixed-Frequency Colpitts Oscillator
  • 4-2-3 Validation Circuits
  • 4-2-4 Series Feedback Oscillator [5, Appendix A, pp. 384-388]
  • 4-2-5 2400 MHz MOSFET-Based Push-Pull Oscillator
  • 4-2-6 Oscillators for IC Applications
  • 4-2-7 Noise in Semiconductors and Circuits
  • 4-2-8 Summary
  • 4-3 USE OF TUNING DIODES
  • 4-3-1 Diode Tuned Resonant Circuits
  • 4-3-2 Practical Circuits
  • 4-4 USE OF DIODE SWITCHES
  • 4-4-1 Diode Switches for Electronic Band Selection
  • 4-4-2 Use of Diodes for Frequency Multiplication
  • 4-5 REFERENCE FREQUENCY STANDARDS
  • 4-5-1 Specifying Oscillators
  • 4-5-2 Typical Examples of Crystal Oscillator Specifications
  • 4-6 MIXER APPLICATIONS
  • 4-7 PHASE/FREQUENCY COMPARATORS
  • 4-7-1 Diode Rings.
  • 4-7-2 Exclusive ORs
  • 4-7-3 Sample/Hold Detectors
  • 4-7-4 Edge-Triggered JK Master/Slave Flip-Flops
  • 4-7-5 Digital Tri-State Comparators
  • 4-8 WIDEBAND HIGH-GAIN AMPLIFIERS
  • 4-8-1 Summation Amplifiers
  • 4-8-2 Differential Limiters
  • 4-8-3 Isolation Amplifiers
  • 4-8-4 Example Implementations
  • 4-9 PROGRAMMABLE DIVIDERS
  • 4-9-1 Asynchronous Counters
  • 4-9-2 Programmable Synchronous Up-/Down-Counters
  • 4-9-3 Advanced Implementation Example
  • 4-9-4 Swallow Counters/Dual-Modulus Counters
  • 4-9-5 Look-Ahead and Delay Compensation
  • 4-10 LOOP FILTERS
  • 4-10-1 Passive RC Filters
  • 4-10-2 Active RC Filters
  • 4-10-3 Active Second-Order Low-Pass Filters
  • 4-10-4 Passive LC Filters
  • 4-10-5 Spur-Suppression Techniques
  • 4-11 MICROWAVE OSCILLATOR DESIGN
  • 4-11-1 The Compressed Smith Chart
  • 4-11-2 Series or Parallel Resonance
  • 4-11-3 Two-Port Oscillator Design
  • 4-12 MICROWAVE RESONATORS
  • 4-12-1 SAW Oscillators
  • 4-12-2 Dielectric Resonators
  • 4-12-3 YIG Oscillators
  • 4-12-4 Varactor Resonators
  • 4-12-5 Ceramic Resonators
  • 4-12 REFERENCES
  • 4-12 SUGGESTED READINGS
  • 4-12-5 Section 4-3 Documents
  • 4-12-5 Section 4-5 Documents
  • 4-12-5 Section 4-6 Documents
  • 4-12-5 Section 4-7 Documents
  • 4-12-5 Section 4-8 Documents
  • 4-12-5 Section 4.9 Documents
  • 4-12-5 Section 4.10 Documents
  • 4-12-5 Section 4.11 Documents
  • 4-12-5 Section 4.12 Documents
  • Chapter 5 Digital PLL Synthesizers
  • 5-1 Multiloop Synthesizers Using Different Techniques
  • 5-1-1 Direct Frequency Synthesis
  • 5-1-2 Multiple Loops
  • 5-2 System Analysis
  • 5-3 Low-Noise Microwave Synthesizers
  • 5-3-1 Building Blocks
  • 5-3-2 Output Loop Response
  • 5-3-3 Low Phase Noise References: Frequency Standards
  • 5-3-4 Critical Stage
  • 5-3-5 Time Domain Analysis
  • 5-3-6 Summary
  • 5-3-7 Two Commercial Synthesizer Examples.
  • 5-4 Microprocessor Applications in Synthesizers
  • 5-5 Transceiver Applications
  • 5-6 About Bits, Symbols, and Waveforms
  • 5-6-1 Representation of a Modulated RF Carrier
  • 5-6-2 Generation of the Modulated Carrier
  • 5-6-3 Putting It all Together
  • 5-6-4 Combination of Techniques
  • 5-6 Acknowledgments
  • 5-6 References
  • 5-6 Bibliography and Suggested Reading
  • Chapter 6 A High-Performance Hybrid Synthesizer
  • 6-1 Introduction
  • 6-2 Basic Synthesizer Approach
  • 6-3 Loop Filter Design
  • 6-4 Summary
  • Bibliography
  • Chapter A Mathematical Review
  • A-1 FUNCTIONS OF A COMPLEX VARIABLE
  • A-2 COMPLEX PLANES
  • A-2-1 Functions in the Complex Frequency Plane
  • A-3 BODE DIAGRAM
  • A-4 LAPLACE TRANSFORM
  • A-4-1 The Step Function
  • A-4-2 The Ramp
  • A-4-3 Linearity Theorem
  • A-4-4 Differentiation and Integration
  • A-4-5 Initial Value Theorem
  • A-4-6 Final Value Theorem
  • A-4-7 The Active Integrator
  • A-4-8 Locking Behavior of the PLL
  • A-5 LOW-NOISE OSCILLATOR DESIGN
  • A-5-1 Example Implementation
  • A-6 OSCILLATOR AMPLITUDE STABILIZATION
  • A-7 VERY LOW PHASE NOISE VCO FOR 800 MHZ
  • REFERENCES
  • Chapter B A General-Purpose Nonlinear Approach to the Computation of Sideband Phase Noise in Free-Running Microwave and RF Oscillators
  • B-1 Introduction
  • B-2 Noise Generation in Oscillators
  • B-3 Bias-Dependent Noise Model
  • B-3-1 Bias-Dependent Model
  • B-3-2 Derivation of the Model
  • B-4 General Concept of Noisy Circuits
  • B-4-1 Noise from Linear Elements
  • B-5 Noise Figure of Mixer Circuits
  • B-6 Oscillator Noise Analysis
  • B-7 Limitations of the Frequency-Conversion Approach
  • B-7-1 Assumptions
  • B-7-2 Conversion and Modulation Noise
  • B-7-3 Properties of Modulation Noise
  • B-7-4 Noise Analysis of Autonomous Circuits
  • B-7-5 Conversion Noise Analysis Results
  • B-7-6 Modulation Noise Analysis Results.
  • B-8 Summary of the Phase Noise Spectrum of the Oscillator
  • B-9 Verification Examples for the Calculation of Phase Noise in Oscillators Using Nonlinear Techniques
  • B-9-1 Example 1: High-Q Case Microstrip DRO
  • B-9-2 Example 2: 10 MHz Crystal Oscillator
  • B-9-3 Example 3: The 1-GHz Ceramic Resonator VCO
  • B-9-4 Example 4: Low Phase Noise FET Oscillator
  • B-9-5 Example 5: Millimeter-Wave Applications
  • B-9-6 Example 6: Discriminator Stabilized DRO
  • B-10 Summary
  • B-10 References
  • Chapter C EXAMPLE OF WIRELESS SYNTHESIZERS USING COMMERCIAL ICs
  • Chapter D MMIC-BASED SYNTHESIZERS
  • D-1 INTRODUCTION
  • BIBLIOGRAPHY
  • Chapter E ARTICLES ON DESIGN OF DIELECTRIC RESONATOR OSCILLATORS
  • E-1 THE DESIGN OF AN ULTRA-LOW PHASE NOISE DRO
  • E-1-1 Basic Considerations and Component Selection
  • E-1-2 Component Selection
  • E-1-3 DRO Topologies
  • E-1-4 Small Signal Design Approach for the Parallel Feedback Type DRO
  • E-1-5 Simulated Versus Measured Results
  • E-1-6 Physical Embodiment
  • E-1-7 Acknowledgments
  • E-1-8 Final Remarks
  • REFERENCES
  • BIBLIOGRAPHY
  • E-2 A NOVEL OSCILLATOR DESIGN WITH METAMATERIAL-MÖBIUS COUPLING TO A DIELECTRIC RESONATOR
  • E-2-1 Abstract
  • E-2-2 Introduction
  • REFERENCES
  • Chapter F OPTO-ELECTRONICALLY STABILIZED RF OSCILLATORS
  • F-1 INTRODUCTION
  • F-1-1 Oscillator Basics
  • F-1-2 Resonator Technologies
  • F-1-3 Motivation for OEO
  • F-1-4 Operation Principle of the OEO
  • F-2 EXPERIMENTAL EVALUATION AND THERMAL STABILITY OF OEO
  • F-2-1 Experimental Setup
  • F-2-2 Phase Noise Measurements
  • F-2-3 Thermal Sensitivity Analysis of Standard Fibers
  • F-2-4 Temperature Sensitivity Measurements
  • F-2-5 Temperature Sensitivity Improvement with HC-PCF
  • F-2-6 Improve Thermal Stability Versus Phase Noise Degradation
  • F-2-7 Passive Temperature Compensation
  • F-2-8 Improving Effective Q with Raman Amplification.