Cargando…

Advanced engineering thermodynamics /

Moving effortlerssly among analysis, essay and graphics, this streamlined edition of Adrian Bejan's powerful presentation is aimed at students in all areas of engineering, physics and life sciences.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bejan, Adrian
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : Wiley, 2016.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface; Acknowledgments; Chapter 1 The First Law; 1.1 Terminology; 1.2 Closed Systems; 1.3 Work Transfer; 1.4 Heat Transfer; 1.5 Energy Change; 1.6 Open Systems; 1.7 History; References; Problems; Chapter 2 The Second Law; 2.1 Closed Systems; 2.1.1 Cycle in Contact with One Temperature Reservoir; 2.1.2 Cycle in Contact with Two Temperature Reservoirs; 2.1.3 Cycle in Contact with Any Number of Temperature Reservoirs.
  • 2.1.4 Process in Contact with Any Number of Temperature Reservoirs2.2 Open Systems; 2.3 Local Equilibrium; 2.4 Entropy Maximum and Energy Minimum; 2.5 Carathéodory's Two Axioms; 2.6 A Heat Transfer Man's Two Axioms; 2.7 History; References; Problems; Chapter 3 Entropy Generation, or Exergy Destruction; 3.1 Lost Available Work; 3.2 Cycles; 3.2.1 Heat Engine Cycles; 3.2.2 Refrigeration Cycles; 3.2.3 Heat Pump Cycles; 3.3 Nonflow Processes; 3.4 Steady-Flow Processes; 3.5 Mechanisms of Entropy Generation; 3.5.1 Heat Transfer across a Temperature Difference; 3.5.2 Flow with Friction; 3.5.3 Mixing.
  • 3.6 Entropy Generation Minimization3.6.1 The Method; 3.6.2 Tree-Shaped Fluid Flow; 3.6.3 Entropy Generation Number; References; Problems; Chapter 4 Single-Phase Systems; 4.1 Simple System; 4.2 Equilibrium Conditions; 4.3 The Fundamental Relation; 4.3.1 Energy Representation; 4.3.2 Entropy Representation; 4.3.3 Extensive Properties versus Intensive Properties; 4.3.4 The Euler Equation; 4.3.5 The Gibbs-Duhem Relation; 4.4 Legendre Transforms; 4.5 Relations between Thermodynamic Properties; 4.5.1 Maxwell's Relations; 4.5.2 Relations Measured during Special Processes; 4.5.3 Bridgman's Table.
  • 4.5.4 Jacobians in Thermodynamics4.6 Partial Molal Properties; 4.7 Ideal Gas Mixtures; 4.8 Real Gas Mixtures; References; Problems; Chapter 5 Exergy Analysis; 5.1 Nonflow Systems; 5.2 Flow Systems; 5.3 Generalized Exergy Analysis; 5.4 Air Conditioning; 5.4.1 Mixtures of Air and Water Vapor; 5.4.2 Total Flow Exergy of Humid Air; 5.4.3 Total Flow Exergy of Liquid Water; 5.4.4 Evaporative Cooling; References; Problems; Chapter 6 Multiphase Systems; 6.1 The Energy Minimum Principle; 6.1.1 The Energy Minimum; 6.1.2 The Enthalpy Minimum; 6.1.3 The Helmholtz Free-Energy Minimum.
  • 6.1.4 The Gibbs Free-Energy Minimum6.1.5 The Star Diagram; 6.2 The Stability of a Simple System; 6.2.1 Thermal Stability; 6.2.2 Mechanical Stability; 6.2.3 Chemical Stability; 6.3 The Continuity of the Vapor and Liquid States; 6.3.1 The Andrews Diagram and J. Thomson's Theory; 6.3.2 The van der Waals Equation of State; 6.3.3 Maxwell's Equal-Area Rule; 6.3.4 The Clapeyron Relation; 6.4 Phase Diagrams; 6.4.1 The Gibbs Phase Rule; 6.4.2 Single-Component Substances; 6.4.3 Two-Component Mixtures; 6.5 Corresponding States; 6.5.1 Compressibility Factor; 6.5.2 Analytical P(v, T) Equations of State.