Cargando…

Spectrum and network measurements /

The book has 17 chapters and these chapters are dealt with: spectrum measurement; Decibels; Fourier theory; fast Fourier transform analyzer; swept spectrum analyzer; modulation measurement; distortion measurement; noise measurement; pulse measurement; filtering; averaging; transmission lines; two-po...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Witte, Robert A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Edison, NJ : Scitech Publishing, an imprint of IET, [2014]
Edición:2nd ed.
Colección:Electromagnetic waves.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. Signals and Systems
  • 1.2. Time Domain and Frequency Domain Relationships
  • 1.3. System Transfer Function
  • 1.4. Advantages of using Frequency Domain Measurements
  • 1.5. Spectrum Measurements
  • 1.6.Network Measurements
  • 1.7.Combined Spectrum/Network Analyzers
  • 1.8. Modular Instruments
  • Bibliography
  • 2.1. Definition of the Decibel
  • 2.2. Cardinal Values
  • 2.3. Absolute Decibel Values
  • 2.4. Gain and Loss Calculations
  • 2.5. Decibels and Percent
  • 2.6. Error Expressed in Decibels
  • Bibliography
  • 3.1. Periodicity
  • 3.2. Fourier Series
  • 3.3. Fourier Series of a Square Wave
  • 3.4. Fourier Series of Other Waveforms
  • 3.5. Fourier Transform
  • 3.6. Fourier Transform of a Pulse
  • 3.7. Inverse Fourier Transform
  • 3.8. Fourier Transform Relationships
  • 3.9. Discrete Fourier Transform
  • 3.10. Limitations of the DFT
  • 3.11. Fast Fourier Transform
  • 3.12. Relating Theory to Measurements
  • 3.13. Finite Measurement Time
  • Bibliography.
  • Note continued: 4.1. The Bank-of-Filters Analyzer
  • 4.2. Frequency Resolution
  • 4.3. The FFT Analyzer
  • 4.4. Sampled Waveform
  • 4.5. Sampling Theorem
  • 4.6. FFT Properties
  • 4.7. Controlling the Frequency Span
  • 4.8. Band Selectable Analysis
  • 4.9. Leakage
  • 4.10. Hanning Window
  • 4.11. Flattop Window
  • 4.12. Uniform Window
  • 4.13. Exponential Window
  • 4.14. Selecting a Window Function
  • 4.15. Oscillator Characterization
  • 4.16. Spectral Maps
  • 4.17. Time Domain Display
  • 4.18.Network Measurements
  • 4.19. Phase
  • 4.20. Electronic Filter Characterization
  • 4.21. Cross-Power Spectrum
  • 4.22. Coherence
  • 4.23. Correlation
  • 4.24. Autocorrelation
  • 4.25. Cross-Correlation
  • 4.26. Histogram
  • 4.27. Real-Time Bandwidth
  • 4.28. Real-Time Bandwidth and RMS Averaging
  • 4.29. Real-Time Bandwidth and Transients
  • 4.30. Overlap Processing
  • 4.31. Swept Sine
  • 4.32. Octave Measurements
  • Bibliography
  • 5.1. The Wave Analyzer
  • 5.2. Heterodyne Block Diagram.
  • Note continued: 5.3. The Swept Spectrum Analyzer
  • 5.4. Practical Considerations
  • 5.5. Input Section
  • 5.6. Resolution Bandwidth
  • 5.7. Sweep Limitations
  • 5.8. Specialized Sweep Modes
  • 5.9. Local Oscillator Feedthrough
  • 5.10. Digital IF Section
  • 5.11. Types of Detectors
  • 5.12. The Tracking Generator
  • 5.13. FFT versus Swept Measurements
  • 5.14. Modern Spectrum Analyzer Block Diagrams
  • 5.15. Real-Time Spectrum Analyzer
  • 5.16. Types of Spectrum Analyzers
  • Bibliography
  • 6.1. The Carrier
  • 6.2. Amplitude Modulation
  • 6.3. AM Measurements
  • 6.4. Zero-Span Operation
  • 6.5. Other Forms of Amplitude Modulation
  • 6.6. Angle Modulation
  • 6.7. Narrowband Angle Modulation
  • 6.8. Wideband Angle Modulation
  • 6.9. FM Measurements
  • 6.10.Combined AM and FM
  • 6.11. Digital Modulation
  • 6.12. Quadrature Modulation
  • 6.13.Common Digital Modulation Formats
  • 6.14. Error Vector Magnitude
  • 6.15. Channel Measurements
  • Bibliography
  • 7.1. The Distortion Model.
  • Note continued: 7.2. Single-Tone Input
  • 7.3. Two-Tone Input
  • 7.4. Higher-Order Models
  • 7.5. The Intercept Concept
  • 7.6. Harmonic Distortion Measurements
  • 7.7. Use of Low-Pass Filter on Source
  • 7.8. Intermodulation Distortion Measurements
  • 7.9. Distortion Internal to the Analyzer
  • Bibliography
  • 8.1. Statistical Nature of Random Noise
  • 8.2. Mean, Variance, and Standard Deviation
  • 8.3. Power Spectral Density
  • 8.4. Frequency Distribution of Noise
  • 8.5. Equivalent Noise Bandwidth
  • 8.6. Noise Units and Decibel Relationships
  • 8.7. Noise Measurement
  • 8.8. Automatic Noise Level Measurement
  • 8.9. Noise Floor
  • 8.10. Correction for Noise Floor
  • 8.11. Phase Noise
  • Bibliography
  • 9.1. Spectrum of a Pulsed Waveform
  • 9.2. Effective Pulse Width
  • 9.3. Line Spectrum
  • 9.4. Pulse Spectrum
  • 9.5. Pulsed RF
  • 9.6. Pulse Desensitization
  • Bibliography
  • 10.1. Predetection Filtering
  • 10.2. Predetection Filters
  • 10.3. Postdetection Filtering.
  • Note continued: 10.4. Postdetection Filters
  • 10.5. Averaging
  • 10.6. Variance Ratio
  • 10.7. General Averaging
  • 10.8. Linear Weighting
  • 10.9. Exponential Weighting
  • 10.10. Averaging in Spectrum and Network Analyzers
  • 10.11. RMS Average
  • 10.12. Vector Averaging
  • 10.13. Smoothing
  • 10.14. Averaging versus Filtering
  • Bibliography
  • 11.1. The Need for Transmission Lines
  • 11.2. Distributed Model
  • 11.3. Characteristic Impedance
  • 11.4. Propagation Velocity
  • 11.5. Generator, Line, and Load
  • 11.6. Impedance Changes
  • 11.7. Sinusoidal Voltages
  • 11.8.Complex Reflection Coefficient
  • 11.9. Return Loss
  • 11.10. Standing Waves
  • 11.11. Input Impedance of a Transmission Line
  • 11.12. Measurement Error Due to Impedance Mismatch
  • 11.13. Insertion Gain and Loss
  • 11.14. Line Losses
  • 11.15. Coaxial Lines
  • Bibliography
  • 12.1. The Loading Effect
  • 12.2. Maximum Voltage and Power Transfer
  • 12.3. High-Impedance Inputs
  • 12.4. Active High-Impedance Probes.
  • Note continued: 12.5.Z0 Impedance Inputs
  • 12.6. Input Connectors
  • 12.7.Z0 Terminations
  • 12.8. Power Dividers and Splitters
  • 12.9. Attenuators
  • 12.10. Return Loss Improvement
  • 12.11. The Classical Attenuator Problem
  • 12.12. Impedance Matching Devices
  • 12.13. Measurement Filters
  • Bibliography
  • 13.1. Sinusoidal Signals
  • 13.2. The Transfer Function
  • 13.3. Improved Two-Port Model
  • 13.4. Impedance Parameters
  • 13.5. Admittance Parameters
  • 13.6. Hybrid Parameters
  • 13.7. Transmission Parameters
  • 13.8. Scattering Parameters
  • 13.9. Transfer Function and S21
  • 13.10. Why S-Parameters?
  • Bibliography
  • 14.1. Basic Network Measurements
  • 14.2. Oscilloscope and Sweep Generator
  • 14.3.Network Measurements Using a Spectrum Analyzer
  • 14.4. Vector Network Analyzer
  • 14.5. Directional Bridges and Couplers
  • 14.6.S-Parameter Test Set
  • 14.7. Modern Vector Network Analyzer Configurations
  • 14.8. Sweep Limitations
  • 14.9. Power Sweep.
  • Note continued: 14.10. Flexible Source Frequency
  • 14.11. VNA Time Domain Measurements
  • 14.12. Nonlinear VNA Measurements
  • Bibliography
  • 15.1. Distortionless Transmission
  • 15.2. Nonlinearity
  • 15.3. Linear Distortion
  • 15.4. Importance of Linear Phase
  • 15.5. Group Delay
  • 15.6. Normalization
  • 15.7. Measurement Plane
  • 15.8. Reflection Measurements
  • 15.9. Directional Bridges and Couplers
  • 15.10. Reflection Configuration
  • 15.11. Reflection Normalization
  • 15.12. Error in Reflection Measurements
  • 15.13. Vector Error Correction
  • 15.14. Normalization Revisited
  • 15.15. Two-Term Error Correction
  • 15.16. Three-Term Error Correction
  • 15.17. Two-Port Error Correction
  • Bibliography
  • 16.1. Electromagnetic Compatibility
  • 16.2. Radiated Emissions
  • 16.3. Antennas
  • 16.4. Near Field and Far Field
  • 16.5. EMI Receiver Requirements
  • 16.6. Peak, Quasi-Peak, and Average Detectors
  • 16.7. Conducted Emissions
  • 16.8. Line Impedance Stabilization Network.
  • Note continued: 16.9. EMC Troubleshooting
  • 16.10. Near-Field Probes
  • 16.11. Current Probe
  • 16.12. Preamplifiers
  • Bibliography
  • 17.1. Source Specifications
  • 17.2. Receiver Characteristics
  • 17.3. Spectrum Analyzer Dynamic Range
  • 17.4.Network Analyzer Specifications
  • Bibliography.