Cargando…

Elasticity : tensor, dyadic, and engineering approaches /

"Written for advanced undergraduates and beginning graduate students, this exceptionally clear text treats both the engineering and mathematical aspects of elasticity. It is especially useful because it offers the theory of linear elasticity from three standpoints: engineering, Cartesian tensor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chou, Pei Chi, 1924-
Otros Autores: Pagano, Nicholas J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Dover Publications, 1992.
Colección:Dover books on engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_ocn881845058
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 140627r19921967nyua ob 001 0 eng d
040 |a KNOVL  |b eng  |e rda  |e pn  |c KNOVL  |d ZCU  |d YDXCP  |d OCLCQ  |d STF  |d VT2  |d OCLCQ  |d CPO  |d CEF  |d RRP  |d AU@  |d WYU  |d OCLCO  |d ERF  |d OCLCQ  |d MM9  |d OCLCQ  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961873921  |a 988678168  |a 999572923  |a 1065820394  |a 1280830934  |a 1280916839 
020 |a 9781628708196  |q (electronic bk.) 
020 |a 1628708190  |q (electronic bk.) 
020 |z 0486669580 
020 |z 9780486669588 
029 1 |a GBVCP  |b 83019794X 
035 |a (OCoLC)881845058  |z (OCoLC)961873921  |z (OCoLC)988678168  |z (OCoLC)999572923  |z (OCoLC)1065820394  |z (OCoLC)1280830934  |z (OCoLC)1280916839 
050 4 |a QA931  |b .C5 1992eb 
070 |a QA931  |b .C5 1992eb 
082 0 4 |a 620.1/1232  |2 22 
084 |a UF 3000  |2 rvk 
084 |a MTA 050f  |2 stub 
049 |a UAMI 
100 1 |a Chou, Pei Chi,  |d 1924- 
245 1 0 |a Elasticity :  |b tensor, dyadic, and engineering approaches /  |c Pei Chi Chou, Nicholas J. Pagano. 
264 1 |a New York :  |b Dover Publications,  |c 1992. 
300 |a 1 online resource (xiv, 290 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Dover books on engineering 
500 |a Originally published: Princeton, N.J. : Van Nostrand, 1967. 
504 |a Includes bibliographical references (pages 283-284) and index. 
520 1 |a "Written for advanced undergraduates and beginning graduate students, this exceptionally clear text treats both the engineering and mathematical aspects of elasticity. It is especially useful because it offers the theory of linear elasticity from three standpoints: engineering, Cartesian tensor, and vector-dyadic. In this way the student receives a more complete picture and a more thorough understanding of engineering elasticity. Prerequisites are a working knowledge of statics and strength of materials plus calculus and vector analysis." "The first part of the book treats the theory of elasticity by the most elementary approach, emphasizing physical significance and using engineering notations. It gives engineering students a clear, basic understanding of linear elasticity. The latter part of the text, after Cartesian tensor and dyadic notations are introduced, gives a more general treatment of elasticity. Most of the equations of the earlier chapters are repeated in Cartesian tensor notation and again in vector-dyadic notation. By having access to this threefold approach in one book, beginning students will benefit from cross-referencing, which makes the learning process easier." "Another helpful feature of this text is the charts and tables showing the logical relationships among the equations--especially useful in elasticity, where the mathematical chain from definition and concept to application is often long. Understanding of the theory is further reinforced by extensive problems at the end of of each chapter."--Jacket 
588 0 |a Print version record. 
505 0 |a Machine derived contents note: Preface -- Introduction -- 1 Analysis Of Stress -- 1.1 Introduction -- 1.2 "Body Forces, Surface Forces, and Stresses" -- 1.3 Uniform State of Stress (Two-Dimensional) -- 1.4 Principal Stresses -- 1.5 Mohr's Circle of Stress -- 1.6 State of Stress at a Point -- 1.7 Differential Equations of Equilibrium -- 1.8 Three-Dimensional State of Stress at a Point -- 1.9 Summary -- Problems -- 2 Strain And Displacement -- 2.1 Introduction -- 2.2 Strain-Displacement Relations -- 2.3 Compatibility Equations -- 2.4 State of Strain at a Point -- 2.5 General Displacements -- 2.6 Principle of Superposition -- 2.7 Summary -- Problems -- 3 Stress Strain Relations -- 3.1 Introduction -- 3.2 Generalized Hooke's Law -- 3.3 Bulk Modulus of Elasticity -- 3.4 Summary -- Problems -- 4 Formulation Of Problems In Elasticity -- 4.1 Introduction -- 4.2 Boundary Conditions -- 4.3 Governing Equations in Plane Strain Problems -- 4.4 Governing Equations in Three-Dimensional Problems -- 4.5 Principal of Superposition -- 4.6 Uniqueness of Elasticity Solutions -- 4.7 Saint-Venant's Principle -- 4.8 Summary -- Problems -- 5 Two-Dimensional Problems -- 5.1 Introduction -- 5.2 Plane Stress Problems -- 5.3 Approximate Character of Plane Stress Equations -- 5.4 Polar Coordinates in Two-Dimensional Problems -- 5.5 Axisymmetric Plane Problems -- 5.6 The Semi-Inverse Method -- Problems -- 6 Torsion Of Cylindrical Bars -- 6.1 General Solution of the Problem -- 6.2 Solutions Derived from Equations of Boundaries -- 6.3 Membrane (Soap Film) Analogy -- 6.4 Multiply Connected Cross Sections -- 6.5 Solution by Means of Separation of Variables -- Problems -- 7 Energy Methods -- 7.1 Introduction -- 7.2 Strain Energy -- 7.3 Variable Stress Distribution and Body Forces -- 7.4 Principle of Virtual Work and the Theorem of Minimum Potential Energy -- 7.5 Illustrative Problems -- 7.6 Rayleigh-Ritz Method -- Problems -- 8 Cartesian Tensor Notation -- 8.1 Introduction -- 8.2 Indicial Notation and Vector Transformations -- 8.3 Higher-Order Tensors -- 8.4 Gradient of a Vector -- 8.5 The Kronecker Delta -- 8.6 Tensor Contraction -- 8.7 The Alternating Tensor -- 8.8 The Theorem of Gauss -- Problems -- 9 The Stress Tensor -- 9.1 State of Stress at a Point -- 9.2 Principal Axes of the Stress Tensor -- 9.3 Equations of Equilibrium -- 9.4 The Stress Ellipsoid -- 9.5 Body Moment and Couple Stress -- Problems -- 10 "Strain, Displacement, And The Governing Equations Of Elasticity" -- 10.1 Introduction -- 10.2 Displacement and Strain -- 10.3 Generalized Hooke's Law -- 10.4 Equations of Compatibility -- 10.5 Governing Equations in Terms of Displacement -- 10.6 Strain Energy -- 10.7 Governing Equations of Elasticity -- Problems -- 11 Vector And Dyadic Notation In Elasticity -- 11.1 Introduction -- 11.2 Review of Basic Notations and Relations in Vector Analysis -- 11.3 Dyadic Notation -- 11.4 Vector Representation of Stress on a Plane -- 11.5 Equations of Transformation of Stress -- 11.6 Equations of Equilibrium -- 11.7 Displacement and Strain -- 11.8 Generalized Hooke's Law and Navier's Equation -- 11.9 Equations of Compatibility -- 11.10 Strain Energy -- 11.12 Governing Equations of Elasticity -- Problems -- 12 Orthogonal Curvilinear Coordinates -- 12.1 Introduction -- 12.2 Scale Factors -- 12.3 Derivatives of the Unit Vectors -- 12.4 Vector Operators -- 12.5 Dyadic Notation and Dyadic Operators -- 12.6 Governing Equations of Elasticity in Dyadic Notation -- 12.7 Summary of Vect. 
590 |a Knovel  |b ACADEMIC - Mechanics & Mechanical Engineering 
650 0 |a Elasticity. 
650 2 |a Elasticity 
650 6 |a Élasticité. 
650 7 |a Elasticity  |2 fast 
650 7 |a Elastizitätstheorie  |2 gnd 
650 7 |a Elasticidade.  |2 larpcal 
650 7 |a Élasticité.  |2 ram 
700 1 |a Pagano, Nicholas J. 
776 0 8 |i Print version:  |a Chou, Pei Chi, 1924-  |t Elasticity  |z 0486669580  |w (DLC) 91031041  |w (OCoLC)24430425 
830 0 |a Dover books on engineering. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpETDEA007/toc  |z Texto completo 
938 |a Internet Archive  |b INAR  |n elasticitytensor0000chou_h5l8 
938 |a YBP Library Services  |b YANK  |n 12215527 
994 |a 92  |b IZTAP