The finite element method : linear static and dynamic finite element analysis /
Directed toward students without in-depth mathematical training, this text cultivates comprehensive skills in linear static and dynamic finite element methodology. Included are a comprehensive presentation and analysis of algorithms of time-dependent phenomena plus beam, plate, and shell theories de...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Mineola, NY :
Dover Publications,
2000.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part 1. Linear Static Analysis
- 1. Fundamental Concepts; A Simple One-Dimensional Boundary-Value Problem
- 1.1. Introductory Remarks and Preliminaries
- 1.2. Strong, or Classical, Form of the Problem
- 1.3. Weak, or Variational, Form of the Problem
- 1.4. Eqivalence of Strong and Weak Forms; Natural Boundary Conditions
- 1.5. Galerkin's Approximation Method
- 1.6. Matrix Equations; Stiffness Matrix K
- 1.7. Examples: 1 and 2 Degrees of Freedom
- 1.8. Piecewise Linear Finite Element Space
- 1.9. Properties of K
- 1.10. Mathematical Analysis
- 1.11. Interlude: Gauss Elimination; Hand-calculation Version
- 1.12. The Element Point of View
- 1.13. Element Stiffness Matrix and Force Vector
- 1.14. Assembly of Global Stiffness Matrix and Force Vector; LM Array
- 1.15. Explicit Computation of Element Stiffness Matrix and Force Vector
- 1.16. Exercise: Bernoulli-Euler Beam Theory and Hermite Cubics
- Appendix 1.I. An Elementary Discussion of Continuity, Differentiability, and Smoothness
- 2. Formulation of Two- and Three-Dimensional Boundary-Value Problems
- 2.1. Introductory Remarks
- 2.2. Preliminaries
- 2.3. Classical Linear Heat Conduction: Strong and Weak Forms; Equivalence
- 2.4. Heat Conduction: Galerkin Formulation; Symmetry and Positive-definiteness of K
- 2.5. Heat Conduction: Element Stiffness Matrix and Force Vector
- 2.6. Heat Conduction: Data Processing Arrays ID, IEN, and LM
- 2.7. Classical Linear Elastostatics: Strong and Weak Forms; Equivalence
- 2.8. Elastostatics: Galerkin Formulation, Symmetry, and Positive-definiteness of K
- 2.9. Elastostatics: Element Stiffness Matrix and Force Vector
- 2.10. Elastostatics: Data Processing Arrays ID, IEN, and LM
- 2.11. Summary of Important Equations for Problems Considered in Chapters 1 and 2
- 2.12. Axisymmetric Formulations and Additional Exercises
- 3. Isoparametric Elements and Elementary Programming Concepts
- 3.1. Preliminary Concepts
- 3.2. Bilinear Quadrilateral Element
- 3.3. Isoparametric Elements
- 3.4. Linear Triangular Element; An Example of "Degeneration"
- 3.5. Trilinear Hexahedral Element
- 3.6. Higher-order Elements; Lagrange Polynomials
- 3.7. Elements with Variable Numbers of Nodes
- 3.8. Numerical Integration; Gaussian Quadrature
- 3.9. Derivatives of Shape Functions and Shape Function Subroutines
- 3.10. Element Stiffness Formulation
- 3.11. Additional Exercises
- Appendix 3.I. Triangular and Tetrahedral Elements
- Appendix 3. II. Methodology for Developing Special Shape Functions with Application to Singularities
- 4. Mixed and Penalty Methods, Reduced and Selective Integration, and Sundry Variational Crimes
- 4.1. "Best Approximation" and Error Estimates: Why the standard FEM usually works and why sometimes it does not
- 4.2. Incompressible Elasticity and Stokes Flow
- 4.2.1. Prelude to Mixed and Penalty Methods
- 4.3. A Mixed Formulation of Compressible Elasticity Capable of Representing the Incompressible Limit
- 4.3.1. Strong Form
- 4.3.2. Weak Form
- 4.3.3. Galerkin Formulation
- 4.3.4. Matrix Problem
- 4.3.5. Definition of Element Arrays
- 4.3.6. Illustration of a Fundamental Difficulty
- 4.3.7. Constraint Counts
- 4.3.8. Discontinuous Pressure Elements
- 4.3.9. Continuous Pressure Elements
- 4.4. Penalty Formulation: Reduced and Selective Integration Techniques; Equivalence with Mixed Methods
- 4.4.1. Pressure Smoothing
- 4.5. An Extension of Reduced and Selective Integration Techniques
- 4.5.1. Axisymmetry and Anisotropy: Prelude to Nonlinear Analysis
- 4.5.2. Strain Projection: The B-approach
- 4.6. The Patch Test; Rank Deficiency
- 4.7. Nonconforming Elements
- 4.8. Hourglass Stiffness
- 4.9. Additional Exercises and Projects
- Appendix 4.I. Mathematical Preliminaries
- 4.I.1. Basic Properties of Linear Spaces
- 4.I.2. Sobolev Norms
- 4.I.3. Approximation Properties of Finite Element Spaces in Sobolev Norms
- 4.I.4. Hypotheses on a(., .)
- Appendix 4. II. Advanced Topics in the Theory of Mixed and Penalty Methods: Pressure Modes and Error Estimates / David S. Malkus
- 4. II.1. Pressure Modes, Spurious and Otherwise
- 4. II.2. Existence and Uniqueness of Solutions in the Presence of Modes
- 4. II.3. Two Sides of Pressure Modes
- 4. II.4. Pressure Modes in the Penalty Formulation
- 4. II.5. The Big Picture
- 4. II.6. Error Estimates and Pressure Smoothing
- 5. The C[superscript 0]-Approach to Plates and Beams
- 5.1. Introduction
- 5.2. Reissner-Mindlin Plate Theory
- 5.2.1. Main Assumptions
- 5.2.2. Constitutive Equation
- 5.2.3. Strain-displacement Equations
- 5.2.4. Summary of Plate Theory Notations
- 5.2.5. Variational Equation
- 5.2.6. Strong Form
- 5.2.7. Weak Form
- 5.2.8. Matrix Formulation
- 5.2.9. Finite Element Stiffness Matrix and Load Vector
- 5.3. Plate-bending Elements
- 5.3.1. Some Convergence Criteria
- 5.3.2. Shear Constraints and Locking
- 5.3.3. Boundary Conditions
- 5.3.4. Reduced and Selective Integration Lagrange Plate Elements
- 5.3.5. Equivalence with Mixed Methods
- 5.3.6. Rank Deficiency
- 5.3.7. The Heterosis Element
- 5.3.8. T1: A Correct-rank, Four-node Bilinear Element
- 5.3.9. The Linear Triangle
- 5.3.10. The Discrete Kirchhoff Approach
- 5.3.11. Discussion of Some Quadrilateral Bending Elements
- 5.4. Beams and Frames
- 5.4.1. Main Assumptions
- 5.4.2. Constitutive Equation
- 5.4.3. Strain-displacement Equations
- 5.4.4. Definitions of Quantities Appearing in the Theory
- 5.4.5. Variational Equation
- 5.4.6. Strong Form
- 5.4.7. Weak Form
- 5.4.8. Matrix Formulation of the Variational Equation
- 5.4.9. Finite Element Stiffness Matrix and Load Vector
- 5.4.10. Representation of Stiffness and Load in Global Coordinates
- 5.5. Reduced Integration Beam Elements
- The C[superscript 0]-Approach to Curved Structural Elements
- 6.1. Introduction
- 6.2. Doubly Curved Shells in Three Dimensions
- 6.2.1. Geometry
- 6.2.2. Lamina Coordinate Systems
- 6.2.3. Fiber Coordinate Systems
- 6.2.4. Kinematics
- 6.2.5. Reduced Constitutive Equation
- 6.2.6. Strain-displacement Matrix
- 6.2.7. Stiffness Matrix
- 6.2.8. External Force Vector
- 6.2.9. Fiber Numerical Integration
- 6.2.10. Stress Resultants
- 6.2.11. Shell Elements
- 6.2.12. Some References to the Recent Literature
- 6.2.13. Simplifications: Shells as an Assembly of Flat Elements
- 6.3. Shells of Revolution; Rings and Tubes in Two Dimensions
- 6.3.1. Geometric and Kinematic Descriptions
- 6.3.2. Reduced Constitutive Equations
- 6.3.3. Strain-displacement Matrix
- 6.3.4. Stiffness Matrix
- 6.3.5. External Force Vector
- 6.3.6. Stress Resultants
- 6.3.7. Boundary Conditions
- 6.3.8. Shell Elements
- Part 2. Linear Dynamic Analysis
- 7. Formulation of Parabolic, Hyperbolic, and Elliptic-Elgenvalue Problems
- 7.1. Parabolic Case: Heat Equation
- 7.2. Hyperbolic Case: Elastodynamics and Structural Dynamics
- 7.3. Eigenvalue Problems: Frequency Analysis and Buckling
- 7.3.1. Standard Error Estimates
- 7.3.2. Alternative Definitions of the Mass Matrix; Lumped and Higher-order Mass
- 7.3.3. Estimation of Eigenvalues
- Appendix 7.I. Error Estimates for Semidiscrete Galerkin Approximations
- 8. Algorithms for Parabolic Problems
- 8.1. One-step Algorithms for the Semidiscrete Heat Equation: Generalized Trapezoidal Method
- 8.2. Analysis of the Generalized Trapezoidal Method
- 8.2.1. Modal Reduction to SDOF Form
- 8.2.2. Stability
- 8.2.3. Convergence
- 8.2.4. An Alternative Approach to Stability: The Energy Method
- 8.2.5. Additional Exercises
- 8.3. Elementary Finite Difference Equations for the One-dimensional Heat Equation; the von Neumann Method of Stability Analysis
- 8.4. Element-by-element (EBE) Implicit Methods
- 8.5. Modal Analysis
- 9. Algorithms for Hyperbolic and Parabolic-Hyperbolic Problems
- 9.1. One-step Algorithms for the Semidiscrete Equation of Motion
- 9.1.1. The Newmark Method
- 9.1.2. Analysis
- 9.1.3.
- Measures of Accuracy: Numerical Dissipation and Dispersion
- 9.1.4. Matched Methods
- 9.1.5. Additional Exercises
- 9.2. Summary of Time-step Estimates for Some Simple Finite Elements.
- 9.3. Linear Multistep (LMS) Methods
- 9.3.1. LMS Methods for First-order Equations
- 9.3.2. LMS Methods for Second-order Equations
- 9.3.3. Survey of Some Commonly Used Algorithms in Structural Dynamics
- 9.3.4. Some Recently Developed Algorithms for Structural Dynamics
- 9.4. Algorithms Based upon Operator Splitting and Mesh Partitions
- 9.4.1. Stability via the Energy Method
- 9.4.2. Predictor/Multicorrector Algorithms
- 9.5. Mass Matrices for Shell Elements
- 10. Solution Techniques for Eigenvalue Problems
- 10.1. The Generalized Eigenproblem
- 10.2. Static Condensation
- 10.3. Discrete Rayleigh-Ritz Reduction
- 10.4. Irons-Guyan Reduction
- 10.5. Subspace Iteration
- 10.5.1. Spectrum Slicing
- 10.5.2. Inverse Iteration
- 10.6. The Lanczos Algorithm for Solution of Large Generalized Eigenproblems / Bahram Nour-Omid
- 10.6.1. Introduction
- 10.6.2. Spectral Transformation
- 10.6.3. Conditions for Real Eigenvalues
- 10.6.4. The Rayleigh-Ritz Approximation
- 10.6.5. Derivation of the Lanczos Algorithm
- 10.6.6. Reduction to Tridiagonal Form
- 10.6.7. Convergence Criterion for Eigenvalues
- 10.6.8. Loss of Orthogonality
- 10.6.9. Restoring Orthogonality
- 11. Dlearn
- A Linear Static and Dynamic Finite Element Analysis Program / Thomas J.R. Hughes, Robert M. Ferencz and Arthur M. Raefsky
- 11.1. Introduction
- 11.2. Description of Coding Techniques Used in DLEARN
- 11.2.1. Compacted Column Storage Scheme
- 11.2.2. Crout Elimination
- 11.2.3. Dynamic Storage Allocation
- 11.3. Program Structure
- 11.3.1. Global Control
- 11.3.2. Initialization Phase
- 11.3.3. Solution Phase
- 11.4. Adding an Element to DLEARN
- 11.5. DLEARN User's Manual
- 11.5.1. Remarks for the New User
- 11.5.2. Input Instructions
- 11.5.3. Examples
- 1. Planar Truss
- 2. Static Analysis of a Plane Strain Cantilever Beam
- 3. Dynamic Analysis of a Plane Strain Cantilever Beam
- 4. Implicit-explicit Dynamic Analysis of a Rod
- 11.5.4. Subroutine Index for Program Listing.