Lens design fundamentals /
Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer Many new lens design problems and examples - ranging from simple lenses to com...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier/Academic Press,
2010.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Lens Design Fundamentals; Copyright Page; Dedication; Contents; Preface to the Second Edition; Preface to the First Edition; A Special Tribute to Rudolf Kingslake; Chapter 1: The Work of the Lens Designer; 1.1. Relations Between Designer and Factory; 1.1.1 Spherical versus Aspheric Surfaces; 1.1.2 Establishment of Thicknesses; 1.1.3 Antireflection Coatings; 1.1.4 Cementing; 1.1.5 Establishing Tolerances; 1.1.6 Design Tradeoffs; 1.2. The Design Procedure; 1.2.1 Sources of a Likely Starting System; 1.2.2 Lens Evaluation; 1.2.3 Lens Appraisal; 1.2.4 System Changes.
- 1.3. Optical Materials1.3.1 Optical Glass; 1.3.2 Infrared Materials; 1.3.3 Ultraviolet Materials; 1.3.4 Optical Plastics; 1.4. Interpolation of Refractive Indices; 1.4.1 Interpolation of Dispersion Values; 1.4.2 Temperature Coefficient of Refractive Index; 1.5. Lens Types to be Considered; Chapter 2: Meridional Ray Tracing; 2.1. Introduction; 2.1.1 Object and Image; 2.1.2 The Law of Refraction; 2.1.3 The Meridional Plane; 2.1.4 Types of Rays; 2.1.5 Notation and Sign Conventions; 2.2. Graphical Ray Tracing; 2.3. Trigonometrical Ray Tracing at a Spherical Surface; 2.3.1 Program for a Computer.
- 2.4. Some Useful Relations2.4.1 The Spherometer Formula; 2.4.2 Some Useful Formulas; 2.4.3 The Intersection Height of Two Spheres; 2.4.4 The Volume of a Lens; 2.4.5 Solution for Last Radius to Give a Stated uprime; 2.5. Cemented Doublet Objective; 2.6. Ray Tracing at a Tilted Surface; 2.6.1 The Ray Tracing Equations; 2.6.2 Example of Ray Tracing through a Tilted Surface; 2.7. Ray Tracing at an Aspheric Surface; Chapter 3: Paraxial Rays and First-Order Optics; 3.1. Tracing a Paraxial Ray; 3.1.1 The Standard Paraxial Ray Trace; 3.1.2 The (y
- nu) Method; 3.1.3 Inverse Procedure.
- 3.1.4 Angle Solve and Height Solve Methods3.1.5 The (l, lprime) Method; 3.1.6 Paraxial Ray with All Angles; 3.1.7 A Paraxial Ray at an Aspheric Surface; 3.1.8 Graphical Tracing of Paraxial Raysat Finite Heights and Angles; 3.1.9 Matrix Approach to Paraxial Rays; 3.2. Magnification and the Lagrange Theorem; 3.2.1 Transverse Magnification; 3.2.2 Longitudinal Magnification; 3.3. The Gaussian Optics of a Lens System; 3.3.1 The Relation between the Principal Planes; 3.3.2 The Relation between the Two Focal Lengths; 3.3.3 Lens Power; 3.3.4 Calculation of Focal Length.
- 3.3.5 Conjugate Distance Relationships3.3.6 Nodal Points; 3.3.7 Optical Center of Lens; 3.3.8 The Scheimpflug Condition; 3.4. First-Order Layout of an Optical System; 3.4.1 A Single Thick Lens; 3.4.2 A Single Thin Lens; 3.4.3 A Monocentric Lens; 3.4.4 Image Shift Caused by a Parallel Plate; 3.4.5 Lens Bending; 3.4.6 A Series of Separated Thin Elements; 3.4.7 Insertion of Thicknesses; 3.4.8 Two-Lens Systems; 3.5. Thin-Lens Layout of Zoom Systems; 3.5.1 Mechanically Compensated Zoom Lenses; 3.5.2 A Three-Lens Zoom; 3.5.3 A Three-Lens Optically Compensated Zoom System.