Cable vibrations in cable-stayed bridges /
"The fifty years of experience of construction of cable-stayed bridges, since their establishment as a new category among the classical types, have brought an immense progress, ranging from design and conception to materials, analysis, construction, observation, and retrofitting. The growing co...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Zürich, Switzerland :
IABSE,
©2007.
|
Colección: | Structural engineering documents ;
9. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine derived contents note: 1 General 1
- 2 Organisation of the Text 3
- 3 Brief History of Cable-Stayed Bridge Construction 5
- 4 Vibration Phenomena Directly Induced by Wind and Rain 13
- 4.1 Wind Loads on Stay Cables 13
- 4.1.1 Fixed cylinder immersed in smooth flow 14
- 4.1.2 Fixed cylinder immersed in turbulent flow 17
- 4.1.3 Moving cylinder immersed in turbulent flow 19
- 4.1.4 Linearised equations of motion 21
- 4.2 Buffeting 22
- 4.3 Vortex-shedding 23
- 4.3.1 Fundamental characteristics 23
- 4.3.2 Amplitude of oscillations 25
- 4.4 Galloping 29
- 4.4.1 Fundamentals 29
- 4.4.2 Prediction and control measures 32
- 4.5 Wake Effects 33
- 4.5.1 Resonant buffeting 34
- 4.5.2 Vortex resonance 34
- 4.5.3 Interference effects 35
- 4.5.3.1 Vortex resonance effects 36
- 4.5.3.2 Galloping 36
- 4.5.3.3 Interference galloping of free cables 37
- 4.5.3.4 Interference effects in stranded cables 38
- 4.6 Rain-wind Induced Vibrations 39
- 4.6.1 Identification of the phenomenon 39
- 4.6.2 Experimental observations 40
- 4.6.3 Analytical and design models 44
- 4.6.3.1 Analytical model from Yamaguchi 44
- 4.6.3.2 Analytical model of Peil and Nahrath 48
- 4.6.3.3 Design model of Geurts and van Staalduinen 49
- 4.6.4 Mechanisms of instability 50
- 4.6.4.1 Conventional Karman vortex excitation 50
- 4.6.4.2 Galloping instability 51
- 4.6.4.3 High speed vortex excitation 51
- 4.6.5 Other variables to rain-wind induced oscillations 52
- 4.6.6 Practical cases of occurrence of rain-wind vibration and prevention
- measures 52
- 4.7 Drag Crisis 54
- 5 Indirect Excitation 55
- 5.1 General 55
- 5.2 External Excitation 55
- 5.2.1 Linear model 56
- 5.2.2 Linearity of response of current stays 58
- 5.2.3 Non-linear model 59
- 5.3 Parametric Excitation 63
- 5.3.1 General equations 63
- 5.3.2 Application to a stay cable 66
- 5.3.3 Practical occurrence of external/parametric excitation 67
- 5.4 Cable-structure Interaction 69
- 6 Control of Vibrations in Cable-Stayed Bridges 71
- 6.1 General 71
- 6.2 Vibration Control Systems 71
- 6.2.1 Aerodynamic control of vibrations 71
- 6.2.2 Structural control of vibrations 73
- 6.2.3 Mechanical control of vibrations 74
- 6.2.4 Active control-systems 77
- 6.2.4.1 Active aerodynamic appendages 77
- 6.2.4.2 Active mass dampers 77
- 6.2.4.3 Active tendon control 78
- 6.3 Design of an Optimal Passive Damper 78
- 6.3.1 General 78
- 6.3.2 State-of-the-art of research 79
- 6.3.3 Problem formulation 80
- 6.3.3.1 Taut cable 80
- 6.3.3.2 Shallow cable 85
- 6.3.3.3 Bending stiffness effects 91
- 6.3.3.4 Flexibility of the dampers or of the supports 94
- 6.3.3.5 Damper non-linearity 97
- 6.3.3.6 Combined effects of sag, bending stiffness and flexibility
- of damper supports 99
- 6.3.3.7 Combined effect of two dampers 100
- 6.3.4 Practical applications 103
- 6.3.4.1 Evaluation of maximum attainable damping ratio for a
- particular damper location 103
- 6.3.4.2 Specification of damper size to fulfil minimum damping
- requirements 107
- 7 Case Reports 109
- 7.1 Skarnsundet Bridge (Norway) 110
- 7.2 Puente Real Bridge (Badajoz) 112
- 7.3 Veterans Memorial and Fred Harman Bridge (Texas) 114
- 7.4 Erasmus Bridge (Rotterdam) 119
- 7.5 Kap Shui Mun Bridge (Hong Kong) 124
- 7.6 Oresundsbron (Denmark-Sweden) 128
- 7.7 Uddevallabron (Sweden) 131
- 7.8 Friction Damper Test 133
- 8 References 137
- Appendix A 147
- A.I Objectives 147
- A.2 Static Behaviour 147
- A.2.1 General assumption: Elastic catenary 148
- A.2.2 Elastic parabola 153
- A.2.3 Numerical modelling 154
- A.2.3.1 Linear model: Truss element 154
- A.2.3.2 Linear model refinement: Equivalent modulus of elasticity 155
- A.2.3.3 Linear model refinement: Multi-link approach 156
- A.2.3.4 Non-linear model: Cable element 157
- A.2.3.5 Comparative analysis for global study of a cable-stayed
- bridge 157
- Appendix B 163
- B.1 Objectives 163
- B.2 Linear Theory of vibrations of horizontal-cables 163
- B.2.1 Basic assumptions and equilibrium equations 163
- B.2.2 Natural frequencies and modal shapes 164
- B.2.2.1 Out-of-plane motion 164
- B.2.2.2 In-plane motion 164
- B.3 Linear Theory of Vibrations of Inclined Cables 168
- B.3.1 Simplified approach 168
- B.3.2 Asymptotic approach 169
- B.4 Bending Stiffness Effects 173
- B.4.1 Taut string approach 173
- B.4.2 Simplified sagged cable approach 174
- Appendix C 177
- C.1 General 177
- C.2 Methods of Force Assessment 177
- C.2.1 Direct measurement of stress in tensioning jacks 177
- C.2.2 Application of ring load cells or of strain gauges in strands 177
- C.2.3 Measurement of cable elongation 178
- C.2.4 Topographic survey 179
- C.2.5 Vibration method 179
- C.3 Force and Damping Assessment Based on the Vibration Method 179
- C.3.1 Vibrating chord theory 179
- C.3.2 Bending and sag effects 180
- C.3.3 Measurement of cable frequencies 181
- C.3.4 Estimation of cable damping 182
- C.3.5 Practical application 184.