Cargando…

Machine learning in asset pricing /

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricingInvestors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nagel, Stefan, 1973- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, [2021]
Colección:Princeton lectures in finance.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1239985018
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 220729s2021 njua ob 001 0 eng
010 |a  2023701451 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d UKAHL  |d P@U  |d YDX  |d JSTOR  |d N$T  |d DEGRU  |d IEEEE  |d VT2  |d SFB  |d STBDS  |d EBLCP  |d OCLCO 
019 |a 1273311172  |a 1273313461  |a 1275788686  |a 1277125244  |a 1277205507  |a 1279020572  |a 1280074762  |a 1280168182  |a 1280362136  |a 1283793655 
020 |a 9780691218717  |q ebook 
020 |a 0691218714 
020 |z 9780691218700  |q (hardcover) 
020 |z 0691218706 
029 1 |a AU@  |b 000069241646 
035 |a (OCoLC)1239985018  |z (OCoLC)1273311172  |z (OCoLC)1273313461  |z (OCoLC)1275788686  |z (OCoLC)1277125244  |z (OCoLC)1277205507  |z (OCoLC)1279020572  |z (OCoLC)1280074762  |z (OCoLC)1280168182  |z (OCoLC)1280362136  |z (OCoLC)1283793655 
037 |a 22573/ctv19f7x75  |b JSTOR 
037 |a 9519805  |b IEEE 
050 0 0 |a HG4636 
072 7 |a BUS  |x 027010  |2 bisacsh 
072 7 |a BUS  |x 027000  |2 bisacsh 
072 7 |a COM  |x 094000  |2 bisacsh 
082 0 4 |a 332.63/2220285631  |2 23 
082 0 4 |a 332.6  |2 23 
049 |a UAMI 
100 1 |a Nagel, Stefan,  |d 1973-  |e author. 
245 1 0 |a Machine learning in asset pricing /  |c Stefan Nagel. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c [2021] 
300 |a 1 online resource (x, 144 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Princeton lectures in finance 
504 |a Includes bibliographical references (pages 135-139 ) and index. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
505 0 0 |t Frontmatter --  |t CONTENTS --  |t Preface --  |t Machine Learning in Asset Pricing --  |t Chapter 1 Introduction --  |t Chapter 2 Supervised Learning --  |t Chapter 3 Supervised Learning in Asset Pricing --  |t Chapter 4 ML in Cross-Sectional Asset Pricing --  |t Chapter 5 ML as Model of Investor Belief Formation --  |t Chapter 6 A Research Agenda --  |t Bibliography --  |t Index 
520 |a A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricingInvestors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Capital assets pricing model. 
650 0 |a Machine learning  |x Economic aspects. 
650 0 |a Artificial intelligence  |x Financial applications. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Investments  |x Mathematical models. 
650 0 |a Prices  |x Mathematical models. 
650 6 |a Modèle d'évaluation des actifs financiers. 
650 6 |a Apprentissage automatique  |x Aspect économique. 
650 6 |a Intelligence artificielle  |x Applications financières. 
650 6 |a Finances  |x Modèles mathématiques. 
650 6 |a Investissements  |x Modèles mathématiques. 
650 6 |a Prix  |x Modèles mathématiques. 
650 7 |a BUSINESS & ECONOMICS  |x Finance  |x Financial Engineering.  |2 bisacsh 
650 7 |a Prices  |x Mathematical models  |2 fast 
650 7 |a Investments  |x Mathematical models  |2 fast 
650 7 |a Finance  |x Mathematical models  |2 fast 
650 7 |a Capital assets pricing model  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |t Machine learning in asset pricing  |d Princeton, New Jersey : Princeton University Press, [2021]  |z 9780691218700  |w (DLC) 2022275700 
830 0 |a Princeton lectures in finance. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv19fvx8r  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 301820163 
938 |a Project MUSE  |b MUSE  |n muse93491 
938 |a EBSCOhost  |b EBSC  |n 2678375 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6483052 
938 |a De Gruyter  |b DEGR  |n 9780691218717 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38316547 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0002679198 
994 |a 92  |b IZTAP