Cargando…

Mathematical knowledge and the interplay of practices /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ferreirós Domínguez, José (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • List of Illustrations
  • Foreword
  • 1 On Knowledge and Practices: A Manifesto
  • 2 The Web of Practices
  • 2.1. Historical Work on Practices
  • 2.2. Philosophers Working on Practices
  • 2.3. What Is Mathematical Practice, Then?
  • 2.4. The Multiplicity of Practices
  • 2.5. The Interplay of Practices and Its Basis
  • 3 Agents and Frameworks
  • 3.1. Frameworks and Related Matters
  • 3.2. Interlude on Examplars
  • 3.3. On Agents
  • 3.4. Counting Practices and Cognitive Abilities
  • 3.5. Further Remarks on Mathematics and Cognition
  • 3.6. Agents and "Metamathematical" Views
  • 3.7. On Systematic Links
  • 4 Complementarity in Mathematics
  • 4.1. Formula and Meaning
  • 4.2. Formal Systems and Intended Models
  • 4.3. Meaning in Mathematics: A Tentative Approach
  • 4.4. The Case of Complex Numbers
  • 5 Ancient Greek Mathematics: A Role for Diagrams
  • 5.1. From the Technical to the Mathematical
  • 5.2. The Elements: Getting Started
  • 5.3. On the Euclidean Postulates: Ruling Diagrams (and Their Reading)
  • 5.4. Diagram-Based Mathematics and Proofs
  • 5.5. Agents, Idealization, and Abstractness
  • 5.6. A Look at the Future-Our Past
  • 6 Advanced Math: The Hypothetical Conception
  • 6.1. The Hypothetical Conception: An Introduction
  • 6.2. On Certainty and Objectivity
  • 6.3. Elementary vs. Advanced: Geometry and the Continuum
  • 6.4. Talking about Objects
  • 6.5. Working with Hypotheses: AC and the Riemann Conjecture
  • 7 Arithmetic Certainty
  • 7.1. Basic Arithmetic
  • 7.2. Counting Practices, Again
  • 7.3. The Certainty of Basic Arithmetic
  • 7.4. Further Clarifications
  • 7.5. Model Theory of Arithmetic
  • 7.6. Logical Issues: Classical or Intuitionistic Math?
  • 8 Mathematics Developed: The Case of the Reals
  • 8.1. Inventing the Reals
  • 8.2. "Tenths" to the Infinite: Lambert and Newton
  • 8.3. The Number Continuum.
  • 8.4. The Reinvention of the Reals
  • 8.5. Simple Infinity and Arbitrary Infinity
  • 8.6. Developing Mathematics
  • 8.7. Mathematical Hypotheses and Scientific Practices
  • 9 Objectivity in Mathematical Knowledge
  • 9.1. Objectivity and Mathematical Hypotheses: A Simple Case
  • 9.2. Cantor's "Purely Arithmetical" Proofs
  • 9.3. Objectivity and Hypotheses, II: The Case of p(N)
  • 9.4. Arbitrary Sets and Choice
  • 9.5. What about Cantor's Ordinal Numbers?
  • 9.6. Objectivity and the Continuum Problem
  • 10 The Problem of Conceptual Understanding
  • 10.1. The Universe of Sets
  • 10.2. A "Web-of-Practices" Look at the Cumulative Picture
  • 10.3. Conceptual Understanding
  • 10.4. Justifying Set Theory: Arguments Based on the Real-Number Continuum
  • 10.5. By Way of Conclusion
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z.