Relativistic quantum field theory. Volume 2, Path integral formalism /
Volume 2 of this three-part series presents the quantization of classical field theory using the path integral formalism. For this volume the target audience is students who wish to learn about relativistic quantum field theory applied to particle physics, however, it is still very accessible and us...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP concise physics. IOP series in nuclear spectroscopy and nuclear structure. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Path integral formulation of quantum mechanics
- 1.1. The transition probability amplitude
- 1.2. Derivation of the quantum mechanical path integral
- 1.3. Path integral in terms of the Lagrangian
- 1.4. Computing simple path integrals
- 1.5. Calculating time-ordered expectation values
- 1.6. Adding sources
- 1.7. Asymptotic states and vacuum-vacuum transitions
- 1.8. Generating functional and Green's function for quadratic theories
- 1.9. Euclidean path integral and the statistical mechanics partition function
- 2. Path integrals for scalar fields
- 2.1. Generating functional for a free real scalar field
- 2.2. Interacting real scalar field theory
- 2.3. Generating functional for connected diagrams
- 2.4. The self-energy
- 2.5. The effective action and vertex functions
- 2.6. Generating function for one-particle irreducible graphs
- 2.7. Interacting complex scalar fields
- 3. Path integrals for fermionic fields
- 3.1. Finite-dimensional Grassmann algebra
- 3.2. Path integral for a free Dirac field
- 3.3. Path integral for an interacting Dirac field
- 3.4. Fermion loops
- 4. Path integrals for abelian gauge fields
- 4.1. Free abelian gauge theory
- 4.2. The photon propagator
- 4.3. Generating functional for abelian gauge fields in general Lorenz gauge
- 4.4. Generating functional for QED in general Lorenz gauge
- 4.5. General Lorenz-gauge QED generating functional to O(e2)
- 4.6. QED effective action and vertex functions
- 4.7. Ward-Takahashi identities
- 5. Groups and Lie groups
- 5.1. Group theory basics
- 5.2. Examples
- 5.3. Representations of groups
- 5.4. The group U(1)
- 5.5. The group SU(2)
- 5.6. The group SU(3)
- 5.7. The group SU(N)
- 5.8. The Haar measure
- 6. Path integral formulation of quantum chromodynamics
- 6.1. The Fadeev-Popov method
- 6.2. QCD Feynman rules
- 6.3. Simple example application of the QCD Feynman rules
- 6.4. Becchi, Rouet, Stora, and Tyutin symmetry
- 6.5. Slavnov-Taylor identities
- 7. Renormalization of QCD
- 7.1. Divergences in scalar field theories
- 7.2. Divergences in Yang-Mills theory
- 7.3. Dimensional regularization refresher
- 7.4. One-loop renormalization of QCD
- 7.5. The one-loop QCD running coupling
- 8. Topological objects in field theory
- 8.1. The kinky sine-Gordon model
- 8.2. Two-dimensional vortex lines
- 8.3. Topological solutions in Yang-Mills
- 8.4. The instanton
- 8.5. The Potryagin index
- 8.6. Explicit solution for a q = 1 instanton
- 8.7. Quantum tunneling, [theta]-vacua, and symmetry breaking
- 8.8. Quantum anomalies
- 8.9. An effective Lagrangian for the anomaly
- 8.10. Instantons and the chiral anomaly
- 8.11. Perturbation theory for the chiral anomaly.