Cargando…

Tying light in knots : applying topology to optics /

Topology is the study of properties of geometrical objects that remain invariant as the object is bent, twisted, or otherwise continuously deformed. It has been an indispensable tool in particle physics and solid-state physics for decades, but in recent years it has become increasingly relevant in c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simon, David S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2018]
Colección:IOP (Series). Release 5.
IOP concise physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9781643272344
003 IOP
005 20181223155440.0
006 m eo d
007 cr cn |||m|||a
008 181214s2018 caua ob 000 0 eng d
020 |a 9781643272344  |q ebook 
020 |a 9781643272320  |q mobi 
020 |z 9781643272313  |q print 
024 7 |a 10.1088/2053-2571/aaddd5  |2 doi 
035 |a (CaBNVSL)thg00978150 
035 |a (OCoLC)1080122293 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC381  |b .S568 2018eb 
072 7 |a PH  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 535.32  |2 23 
100 1 |a Simon, David S.,  |e author. 
245 1 0 |a Tying light in knots :  |b applying topology to optics /  |c David S. Simon. 
246 3 0 |a Applying topology to optics. 
264 1 |a San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :  |b Morgan & Claypool Publishers,  |c [2018] 
264 2 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 5] 
490 1 |a IOP concise physics,  |x 2053-2571 
500 |a "Version: 20181101"--Title page verso. 
500 |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Topology and physics : a historical overview -- 1.1. Introduction : searching for holes in fields of light -- 1.2. Topology and physics 
505 8 |a 2. Electromagnetism and optics -- 2.1. Electromagnetic fields -- 2.2. Electromagnetic potentials and gauge invariance -- 2.3. Linear and nonlinear optical materials -- 2.4. Polarization and the Poincaré sphere 
505 8 |a 3. Characterizing spaces -- 3.1. Loops, holes, and winding numbers -- 3.2. Homotopy classes 
505 8 |a 4. Fiber bundles, curvature, and holonomy -- 4.1. Manifolds -- 4.2. Vectors and forms -- 4.3. Curvature -- 4.4. Connections and covariant derivatives -- 4.5. Fiber bundles -- 4.6. Connection and curvature in electromagnetism and optics 
505 8 |a 5. Topological invariants -- 5.1. Euler characteristic -- 5.2. Winding number -- 5.3. Index -- 5.4. Chern numbers -- 5.5. Linking number and other invariants 
505 8 |a 6. Vortices and corkscrews : singular optics -- 6.1. Optical singularities -- 6.2. Optical angular momentum -- 6.3. Vortices and dislocations -- 6.4. Knotted and braided vortex lines -- 6.5. Polarization singularities -- 6.6. Optical Möbius strips 
505 8 |a 7. Optical solitons -- 7.1. Solitary waves -- 7.2. Solitons in optics 
505 8 |a 8. Geometric and topological phases -- 8.1. The Pancharatnam phase -- 8.2. Berry phase in quantum mechanics -- 8.3. Geometric phase in optical fibers -- 8.4. Holonomy interpretation 
505 8 |a 9. Topological states of matter and light -- 9.1. The quantum hall effect -- 9.2. Topological phases and localized boundary states -- 9.3. Topological photonics. 
520 3 |a Topology is the study of properties of geometrical objects that remain invariant as the object is bent, twisted, or otherwise continuously deformed. It has been an indispensable tool in particle physics and solid-state physics for decades, but in recent years it has become increasingly relevant in classical and quantum optics as well. It makes appearances through such diverse phenomena as Pancharatnam-Berry phases, optical vortices and solitons, and optical simulations of solid-state topological phenomena. This book concisely provides the necessary mathematical background needed to understand these developments and to give a rapid survey of some of the optical applications where topological issues arise. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a David Simon received a bachelor's degree in mathematics and physics from Ohio State University, followed by doctoral degrees in theoretical physics (Johns Hopkins) and engineering (Boston University). Originally trained in mathematical physics and quantum field theory, he now works primarily in quantum optics and related areas. After more than a decade teaching at Nova Southeastern University in Fort Lauderdale, he is currently Professor of Physics in the Department of Physics and Astronomy at Stonehill College (Easton, MA) and a visiting researcher at Boston University. 
588 0 |a Title from PDF title page (viewed on December 14, 2018). 
650 0 |a Geometrical optics. 
650 0 |a Topology. 
650 7 |a Physics.  |2 bicssc 
650 7 |a SCIENCE / Physics / General.  |2 bisacsh 
710 2 |a Morgan & Claypool Publishers,  |e publisher. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9781643272313 
830 0 |a IOP (Series).  |p Release 5. 
830 0 |a IOP concise physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-1-64327-234-4  |z Texto completo