Quantum statistical mechanics in classical phase space /
Quantum Statistical Mechanics in Classical Phase Space offers not just a new computational approach to condensed matter systems, but also a unique conceptual framework for understanding the quantum world and collective molecular behaviour. A formally exact transformation, this revolutionary approach...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Colección: | IOP (Series). Release 21.
IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. Why phase space?
- 1.2. Why not direct quantum methods?
- 1.3. Advantages and challenges of phase space
- 1.4. Old applications, new perspectives
- 2. Wave packet formulation
- 2.1. Introduction
- 2.2. Wave packets as eigenfunctions in the classical limit
- 2.3. Wave packet symmetrization and overlap
- 2.4. Statistical averages in phase space
- 3. Symmetrization factor and permutation loop expansion
- 3.1. Introduction
- 3.2. Partition function
- 3.3. Symmetrization and occupancy for multi-particle states
- 3.4. Symmetrization expansion of the partition function
- 4. Applications with single-particle states
- 4.1. Ideal gas
- 4.2. Independent harmonic oscillators
- 4.3. Occupancy of single-particle states
- 4.4. Ideal fermions
- 5. The [lambda]-transition and superfluidity in liquid helium
- 5.1. Introduction
- 5.2. Ideal gas approach to the [lambda]-transition
- 5.3. Ideal gas : exact enumeration
- 5.4. The [lambda]-transition for interacting bosons
- 5.5. Interactions on the far side
- 5.6. Permutation loops, the [lambda]-transition, and superfluidity
- 6. Further applications
- 6.1. Vibrational heat capacity of solids
- 6.2. One-dimensional harmonic crystal
- 6.3. Loop Markov superposition approximation
- 6.4. Symmetrization for spin-position factorization
- 7. Phase space formalism for the partition function and averages
- 7.1. Partition function in classical phase space
- 7.2. Loop expansion, grand potential and average energy
- 7.3. Multi-particle density
- 7.4. Virial pressure
- 8. High temperature expansions for the commutation function
- 8.1. Preliminary definitions
- 8.2. Expansion 1
- 8.3. Expansion 2
- 8.4. Expansion 3
- 8.5. Fluctuation expansion
- 8.6. Numerical results
- 9. Nested commutator expansion for the commutation function
- 9.1. Introduction
- 9.2. Commutator factorization of exponentials
- 9.3. Maxwell-Boltzmann operator factorized
- 9.4. Temperature derivative of the commutation function operator
- 9.5. Evaluation of the commutation function
- 9.6. Results for the one-dimensional harmonic crystal
- 10. Local state expansion for the commutation function
- 10.1. Effective local field and operator
- 10.2. Higher order local fields
- 10.3. Harmonic local field
- 10.4. Gross-Pitaevskii mean field Schrödinger equation
- 10.5. Numerical results in one-dimension
- 11. Many-body expansion for the commutation function
- 11.1. Commutation function
- 11.2. Symmetrization function
- 11.3. Generalized Mayer f-function
- 11.4. Numerical analysis
- 11.5. Ursell clusters, Lee-Yang theory, classical phase space
- 12. Density matrix and partition function
- 12.1. Introduction
- 12.2. Quantum statistical average
- 12.3. Uniform weight density of wave space
- 12.4. Canonical equilibrium system.