Cargando…

Quantum statistical mechanics in classical phase space /

Quantum Statistical Mechanics in Classical Phase Space offers not just a new computational approach to condensed matter systems, but also a unique conceptual framework for understanding the quantum world and collective molecular behaviour. A formally exact transformation, this revolutionary approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Attard, Phil (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750340557
003 IOP
005 20211206101458.0
006 m eo d
007 cr bn |||m|||a
008 211206s2021 enka fob 000 0 eng d
020 |a 9780750340557  |q ebook 
020 |a 9780750340540  |q mobi 
020 |z 9780750340533  |q print 
020 |z 9780750340564  |q myPrint 
024 7 |a 10.1088/978-0-7503-4055-7  |2 doi 
035 |a (CaBNVSL)thg00082868 
035 |a (OCoLC)1288247138 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC174.4  |b .A787 2021eb 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.133  |2 23 
100 1 |a Attard, Phil,  |e author. 
245 1 0 |a Quantum statistical mechanics in classical phase space /  |c Phil Attard. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2021] 
300 |a 1 online resource (various pagings) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP ebooks. [2021 collection] 
500 |a "Version: 202111"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 1.1. Why phase space? -- 1.2. Why not direct quantum methods? -- 1.3. Advantages and challenges of phase space -- 1.4. Old applications, new perspectives 
505 8 |a 2. Wave packet formulation -- 2.1. Introduction -- 2.2. Wave packets as eigenfunctions in the classical limit -- 2.3. Wave packet symmetrization and overlap -- 2.4. Statistical averages in phase space 
505 8 |a 3. Symmetrization factor and permutation loop expansion -- 3.1. Introduction -- 3.2. Partition function -- 3.3. Symmetrization and occupancy for multi-particle states -- 3.4. Symmetrization expansion of the partition function 
505 8 |a 4. Applications with single-particle states -- 4.1. Ideal gas -- 4.2. Independent harmonic oscillators -- 4.3. Occupancy of single-particle states -- 4.4. Ideal fermions 
505 8 |a 5. The [lambda]-transition and superfluidity in liquid helium -- 5.1. Introduction -- 5.2. Ideal gas approach to the [lambda]-transition -- 5.3. Ideal gas : exact enumeration -- 5.4. The [lambda]-transition for interacting bosons -- 5.5. Interactions on the far side -- 5.6. Permutation loops, the [lambda]-transition, and superfluidity 
505 8 |a 6. Further applications -- 6.1. Vibrational heat capacity of solids -- 6.2. One-dimensional harmonic crystal -- 6.3. Loop Markov superposition approximation -- 6.4. Symmetrization for spin-position factorization 
505 8 |a 7. Phase space formalism for the partition function and averages -- 7.1. Partition function in classical phase space -- 7.2. Loop expansion, grand potential and average energy -- 7.3. Multi-particle density -- 7.4. Virial pressure 
505 8 |a 8. High temperature expansions for the commutation function -- 8.1. Preliminary definitions -- 8.2. Expansion 1 -- 8.3. Expansion 2 -- 8.4. Expansion 3 -- 8.5. Fluctuation expansion -- 8.6. Numerical results 
505 8 |a 9. Nested commutator expansion for the commutation function -- 9.1. Introduction -- 9.2. Commutator factorization of exponentials -- 9.3. Maxwell-Boltzmann operator factorized -- 9.4. Temperature derivative of the commutation function operator -- 9.5. Evaluation of the commutation function -- 9.6. Results for the one-dimensional harmonic crystal 
505 8 |a 10. Local state expansion for the commutation function -- 10.1. Effective local field and operator -- 10.2. Higher order local fields -- 10.3. Harmonic local field -- 10.4. Gross-Pitaevskii mean field Schrödinger equation -- 10.5. Numerical results in one-dimension 
505 8 |a 11. Many-body expansion for the commutation function -- 11.1. Commutation function -- 11.2. Symmetrization function -- 11.3. Generalized Mayer f-function -- 11.4. Numerical analysis -- 11.5. Ursell clusters, Lee-Yang theory, classical phase space 
505 8 |a 12. Density matrix and partition function -- 12.1. Introduction -- 12.2. Quantum statistical average -- 12.3. Uniform weight density of wave space -- 12.4. Canonical equilibrium system. 
520 3 |a Quantum Statistical Mechanics in Classical Phase Space offers not just a new computational approach to condensed matter systems, but also a unique conceptual framework for understanding the quantum world and collective molecular behaviour. A formally exact transformation, this revolutionary approach goes beyond the quantum perturbation of classical condensed matter to applications that lie deep in the quantum regime. 
521 |a Lecturers, and scientific researchers in the fields of thermodynamics, statistical mechanics, condensed matter physics, theoretical chemistry, dynamics, many-body systems, or quantum mechanics. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Phil Attard researches broadly in statistical mechanics, quantum mechanics, thermodynamics, and colloid science. He has held academic positions in Australia, Europe, and North America, and he was a Professorial Research Fellow of the Australian Research Council. He has authored some 120 papers, 10 review articles, and 4 books, with over 7000 citations. As an internationally recognized researcher, he has made seminal contributions to the theory of electrolytes and the electric double layer, to measurement techniques for atomic force microscopy and colloid particle interactions, and to computer simulation and integral equation algorithms for condensed matter. Attard is perhaps best known for his discovery of nanobubbles and for establishing their nature. 
588 0 |a Title from PDF title page (viewed on December 6, 2021). 
650 0 |a Quantum statistics. 
650 0 |a Phase transformations (Statistical physics) 
650 7 |a Quantum physics (quantum mechanics & quantum field theory)  |2 bicssc 
650 7 |a Quantum science.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750340533  |z 9780750340564 
830 0 |a IOP (Series).  |p Release 21. 
830 0 |a IOP ebooks.  |p 2021 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-4055-7  |z Texto completo