Cargando…

Quantum optics and quantum computation : an introduction /

This book studies the application of quantum mechanics to some of the most current and notable concepts in the area, such as quantum optics, cryptography, teleportation, and computing. Written as a complete and comprehensive course text, this book works through mathematically rigorous material using...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bhattacharyya, Dipankar (Professor of physics) (Autor), Guha, Jyotirmoy (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in advances in optics, photonics and optoelectronics.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Bra ket algebra of Dirac
  • 1.1. The bra and ket notation of Dirac
  • 1.2. Hermitian conjugation
  • 1.3. Definition of inner product (also called overlap)
  • 1.4. Definition of outer product
  • 1.5. Eigenvalue equation
  • 1.6. Linear vector space
  • 1.7. Linear independence
  • 1.8. Linear dependence
  • 1.9. Span (expansion of an arbitrary ket)/expansion postulate
  • 1.10. Ket space, bra space, dual space
  • 1.11. Physical significance of inner product <m|n>
  • 1.12. Norm and the process of normalization
  • 1.13. Ortho-normalization (orthogonal + normalized)
  • 1.14. Orthonormal basis (orthogonal + normalized + linearly independent + span)
  • 1.15. Expansion postulate
  • 1.16. Projection operator
  • 1.17. Normal matrix
  • 1.18. Spectral theorem
  • 1.19. Elements of a matrix in Bra Ket notation
  • 1.20. Hermitian matrix operator
  • 1.21. Unitary matrix
  • 1.22. Diagonalization of a matrix--change of basis
  • 1.23. Triangle laws (inequality and equality)
  • 1.24. Cauchy-Schwarz laws (inequality and equality)
  • 1.25. Commutator bracket
  • 1.26. Trace
  • 1.27. Pauli spin matrices
  • 1.28. Orthogonal matrix operator
  • 1.29. Standard method of ortho-normalization Graham-Schmidt ortho-normalization procedure
  • 1.30. Definition of average value
  • 1.31. Some definitions
  • 1.32. Kroneckar product (symbol [Kronecker product]) or direct product or tensor product
  • 1.33. Further reading
  • 1.34. Problems
  • 2. Postulates of quantum mechanics
  • 2.1. First postulate : observables are replaced by operators
  • 2.2. Second postulate : state vector and wave function
  • 2.3. Third postulate : process of measurement
  • 2.4. Fourth postulate : Time evolution of a state
  • 2.5. Solution of the Schrödinger equation
  • 2.6. Unitary operator keeps the length of state vector constant
  • 2.7. Heisenberg's uncertainty principle or principle of indeterminism
  • 2.8. Further reading
  • 2.9. Problems
  • 3. Introduction to quantum computing
  • 3.1. Introduction
  • 3.2. Some basic ideas about classical and quantum computing
  • 3.3. Definition of certain terms relating to quantum computing
  • 3.4. Journey towards quantum computing
  • 3.5. Need for quantum computers
  • 3.6. Landauer's principle
  • 3.7. Quantum computing
  • 3.8. Bits 0 and 1
  • 3.9. A bit of Boolean algebra
  • 3.10. Gate
  • 3.11. Computational complexity
  • 3.12. Further reading
  • 3.13. Problems
  • 4. Quantum bits
  • 4.1. Qubits and comparison with classical bits
  • 4.2. Qubit model applied to the Stern-Gerlach experiment
  • 4.3. Qubit model applied to polarized photon (computational and Hadamard basis introduced)
  • 4.4. Bloch sphere representation of a qubit
  • 4.5. Multiple qubits
  • 4.6. Explicit representation of the basis states
  • 4.7. Bell state or EPR pair (or state)
  • 4.8. Global phase and relative phase
  • 4.9. Measurement depends on choice of basis
  • 4.10. Further reading
  • 4.11. Problems
  • 5. Quantum circuits
  • 5.1. Quantum gate and quantum circuit
  • 5.2. Single-qubit gates
  • 5.3. Quantum NOT gate or Pauli X̂ gate ([̂sigma]x)
  • 5.4. Ẑ gate or Pauli Ẑ gate ([̂sigma]z)
  • 5.5. Pauli Ŷ gate or [̂sigma]y
  • 5.6. Phase shift gates (P̂ gate, Ŝ gate, T̂ gate)
  • 5.7. Hadamard gate Ĥ, Hadamard basis |+>, | - >
  • 5.8. Unitary matrix as length preserving matrix
  • 5.9. Rotation gates R̂X([theta]), R̂Y([theta]), R̂Z([theta])
  • 5.10. Multi-qubit gates
  • 5.11. Controlled-NOT gate or CNOT gate
  • 5.12. Preparing Bell states
  • 5.13. Swap gate
  • 5.14. Controlled U gates
  • 5.15. Toffoli quantum gate or CCNOT gate (controlled controlled NOT gate)
  • 5.16. Controlled SWAP gate or CS gate or Fredkin gate
  • 5.17. Deutsch gate
  • 5.18. Implementing classical computation by quantum gates
  • 5.19. Plan of a quantum circuit
  • 5.20. Quantum half adder circuit
  • 5.21. Quantum full adder circuit
  • 5.22. Oracle (black box) in quantum computer
  • 5.23. Hadamard transformation on each of n qubits leads to a linear superposition of 2n states
  • 5.24. Process of measurement
  • 5.25. Quantum coin flipping
  • 5.26. Further reading
  • 5.27. Problems
  • 6. Teleportation and super dense coding
  • 6.1. Quantum no-cloning theorem
  • 6.2. Teleportation
  • 6.3. Super dense coding (or dense coding) (of Bennett and Wiesner)
  • 6.4. Further reading
  • 6.5. Problems
  • 7. Pure and mixed state
  • 7.1. Pure state
  • 7.2. Mixed state
  • 7.3. Density operator (introduced by Von Neumann)
  • 7.4. Density operator for a pure state
  • 7.5. Average
  • 7.6. Density operator of a mixed state (or an ensemble)
  • 7.7. Quantum mechanics of an ensemble
  • 7.8. Density matrix for a two-level spin system (Stern-Gerlach experiment)
  • 7.9. Single-qubit density operator in terms of Pauli matrices
  • 7.10. Some illustration of density matrix for pure and mixed states
  • 7.11. Partially mixed, completely mixed, maximally mixed states
  • 7.12. Time evolution of density matrix : Liouville-Von Neumann equation
  • 7.13. Partial trace and the reduced density matrix
  • 7.14. Measurement theory of mixed states
  • 7.15. Positive operator valued measure (POVM)
  • 7.16. Further reading
  • 7.17. Problems
  • 8. Quantum algorithms
  • 8.1. Quantum parallelism
  • 8.2. Reversibility
  • 8.3. XOR is addition modulo 2
  • 8.4. Quantum arithmetic and function evaluations
  • 8.5. Deutsch algorithm
  • 8.6. Deutsch-Jozsa (DJ) algorithm
  • 8.7. Bernstein-Vazirani algorithm
  • 8.8. Simon algorithm
  • 8.9. Grover's search algorithm
  • 8.10. Discrete integral transform
  • 8.11. Quantum Fourier transform
  • 8.12. Finding period using QFT
  • 8.13. Implementation of QFT
  • 8.14. Some definitions and GCD evaluation
  • 8.15. Inverse modulo
  • 8.16. Shor's algorithm
  • 8.17. Further reading
  • 8.18. Problems
  • 9. Quantum error correction
  • 9.1. Error in classical computing
  • 9.2. Errors in quantum computing/communication
  • 9.3. The phase flip
  • 9.4. Qubit transmission from Alice to Bob
  • 9.5. Converting a phase flip error to qubit flip error
  • 9.6. Shor's nine-qubit error code
  • 9.7. Further reading
  • 9.8. Problems
  • 10. Quantum information
  • 10.1. Classical information theory
  • 10.2. Decision tree
  • 10.3. Measure of information : Shannon's entropy
  • 10.4. Statistical entropy and Shannon's information entropy
  • 10.5. Communication system
  • 10.6. Shannon's noiseless coding theorem
  • 10.7. Prefix code, binary tree
  • 10.8. Quantum information theory, Von Neumann entropy
  • 10.9. Further reading
  • 10.10. Problems
  • 11. EPR paradox and Bell inequalities
  • 11.1. EPR paradox
  • 11.2. David Bohm's version of EPR paradox (1951)
  • 11.3. Bell's (Gedanken) experiment : EPR and Bell's inequalities
  • 11.4. Clauser, Horne, Shimony and Holt's inequality
  • 11.5. Further reading
  • 11.6. Problems
  • 12. Cryptography--the art of coding
  • 12.1. A bit of history of cryptography
  • 12.2. Essential elements of cryptography
  • 12.3. One-time pad
  • 12.4. RSA cryptosystem
  • 12.5. Fermat's little theorem
  • 12.6. Euler theorem
  • 12.7. Chinese remainder theorem
  • 12.8. RSA algorithm
  • 12.9. Quantum cryptography
  • 12.10. Protocol of quantum cryptography
  • 12.11. Further reading
  • 12.12. Problems
  • 13. Experimental aspects of quantum computing
  • 13.1. Basic principle of nuclear magnetic resonance quantum computing
  • 13.2. Further reading
  • 14. Light-matter interactions
  • 14.1. Interaction Hamiltonian
  • 14.2. Rabi oscillations
  • 14.3. Weak field case
  • 14.4. Strong field case : Rabi oscillations
  • 14.5. Damping phenomena
  • 14.6. The density matrix
  • 14.7. Pure and mixed states
  • 14.8. Equation of motion of the density operator
  • 14.9. Inclusion of decay phenomena
  • 14.10. Vector model of density matrix equations of motion
  • 14.11. Power broadening and saturation of the spectrum
  • 14.12. Spectral line broadening mechanism
  • 14.13. Natural broadening
  • 14.14. Collision or pressure broadening
  • 14.15. Inhomogeneous broadening or Doppler broadening
  • 14.16. Further reading
  • 14.17. Problems
  • 15. Laser spectroscopy and atomic coherence
  • 15.1. Moving two-level atoms in a travelling wave field
  • 15.2. Moving atoms in a standing wave
  • 15.3. Lamb dip
  • 15.4. Crossover resonances
  • 15.5. Atomic coherence phenomena
  • 15.6. EIT Hamiltonian of the system
  • 15.7. Dressed states picture
  • 15.8. Coherent population trapping
  • 15.9. Electromagnetically induced absorption (EIA)
  • 15.10. Further reading
  • 15.11. Problems
  • 16. Quantum theory of radiation
  • 16.1. Maxwell's equations
  • 16.2. The electromagnetic field in a cavity
  • 16.3. Quantization of a single mode
  • 16.4. Multimode radiation field
  • 16.5. Coherent states
  • 16.6. Squeezed states of light
  • 16.7. Further reading
  • 16.8. Problems
  • 17. Interaction of an atom with a quantized field
  • 17.1. Interaction Hamiltonian in terms of Pauli operators
  • 17.2. Absorption and emission phenomena
  • 17.3. Dressed states
  • 17.4. Jaynes-Cummings model
  • 17.5. Theory of spontaneous emission : Wigner-Weisskopf model
  • 17.6. Further reading
  • 17.7. Problems
  • 18. Photon statistics
  • 18.1. Young's double-slit experiment
  • 18.2. Hanbury Brown-Twiss experiment
  • 18.3. Photon counter
  • 18.4. Outcome of the photon counter
  • 18.5. Photon statistics of a perfectly coherent light
  • 18.6. Photon statistics of a thermal light
  • 18.7. Classification of light by second-order correlation function and photon statistics.
  • 18.8. Photon bunching and anti-bunching
  • 18.9. Further reading
  • 18.10. Problems.