Quantum optics and quantum computation : an introduction /
This book studies the application of quantum mechanics to some of the most current and notable concepts in the area, such as quantum optics, cryptography, teleportation, and computing. Written as a complete and comprehensive course text, this book works through mathematically rigorous material using...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP series in advances in optics, photonics and optoelectronics. IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Bra ket algebra of Dirac
- 1.1. The bra and ket notation of Dirac
- 1.2. Hermitian conjugation
- 1.3. Definition of inner product (also called overlap)
- 1.4. Definition of outer product
- 1.5. Eigenvalue equation
- 1.6. Linear vector space
- 1.7. Linear independence
- 1.8. Linear dependence
- 1.9. Span (expansion of an arbitrary ket)/expansion postulate
- 1.10. Ket space, bra space, dual space
- 1.11. Physical significance of inner product <m|n>
- 1.12. Norm and the process of normalization
- 1.13. Ortho-normalization (orthogonal + normalized)
- 1.14. Orthonormal basis (orthogonal + normalized + linearly independent + span)
- 1.15. Expansion postulate
- 1.16. Projection operator
- 1.17. Normal matrix
- 1.18. Spectral theorem
- 1.19. Elements of a matrix in Bra Ket notation
- 1.20. Hermitian matrix operator
- 1.21. Unitary matrix
- 1.22. Diagonalization of a matrix--change of basis
- 1.23. Triangle laws (inequality and equality)
- 1.24. Cauchy-Schwarz laws (inequality and equality)
- 1.25. Commutator bracket
- 1.26. Trace
- 1.27. Pauli spin matrices
- 1.28. Orthogonal matrix operator
- 1.29. Standard method of ortho-normalization Graham-Schmidt ortho-normalization procedure
- 1.30. Definition of average value
- 1.31. Some definitions
- 1.32. Kroneckar product (symbol [Kronecker product]) or direct product or tensor product
- 1.33. Further reading
- 1.34. Problems
- 2. Postulates of quantum mechanics
- 2.1. First postulate : observables are replaced by operators
- 2.2. Second postulate : state vector and wave function
- 2.3. Third postulate : process of measurement
- 2.4. Fourth postulate : Time evolution of a state
- 2.5. Solution of the Schrödinger equation
- 2.6. Unitary operator keeps the length of state vector constant
- 2.7. Heisenberg's uncertainty principle or principle of indeterminism
- 2.8. Further reading
- 2.9. Problems
- 3. Introduction to quantum computing
- 3.1. Introduction
- 3.2. Some basic ideas about classical and quantum computing
- 3.3. Definition of certain terms relating to quantum computing
- 3.4. Journey towards quantum computing
- 3.5. Need for quantum computers
- 3.6. Landauer's principle
- 3.7. Quantum computing
- 3.8. Bits 0 and 1
- 3.9. A bit of Boolean algebra
- 3.10. Gate
- 3.11. Computational complexity
- 3.12. Further reading
- 3.13. Problems
- 4. Quantum bits
- 4.1. Qubits and comparison with classical bits
- 4.2. Qubit model applied to the Stern-Gerlach experiment
- 4.3. Qubit model applied to polarized photon (computational and Hadamard basis introduced)
- 4.4. Bloch sphere representation of a qubit
- 4.5. Multiple qubits
- 4.6. Explicit representation of the basis states
- 4.7. Bell state or EPR pair (or state)
- 4.8. Global phase and relative phase
- 4.9. Measurement depends on choice of basis
- 4.10. Further reading
- 4.11. Problems
- 5. Quantum circuits
- 5.1. Quantum gate and quantum circuit
- 5.2. Single-qubit gates
- 5.3. Quantum NOT gate or Pauli X̂ gate ([̂sigma]x)
- 5.4. Ẑ gate or Pauli Ẑ gate ([̂sigma]z)
- 5.5. Pauli Ŷ gate or [̂sigma]y
- 5.6. Phase shift gates (P̂ gate, Ŝ gate, T̂ gate)
- 5.7. Hadamard gate Ĥ, Hadamard basis |+>, | - >
- 5.8. Unitary matrix as length preserving matrix
- 5.9. Rotation gates R̂X([theta]), R̂Y([theta]), R̂Z([theta])
- 5.10. Multi-qubit gates
- 5.11. Controlled-NOT gate or CNOT gate
- 5.12. Preparing Bell states
- 5.13. Swap gate
- 5.14. Controlled U gates
- 5.15. Toffoli quantum gate or CCNOT gate (controlled controlled NOT gate)
- 5.16. Controlled SWAP gate or CS gate or Fredkin gate
- 5.17. Deutsch gate
- 5.18. Implementing classical computation by quantum gates
- 5.19. Plan of a quantum circuit
- 5.20. Quantum half adder circuit
- 5.21. Quantum full adder circuit
- 5.22. Oracle (black box) in quantum computer
- 5.23. Hadamard transformation on each of n qubits leads to a linear superposition of 2n states
- 5.24. Process of measurement
- 5.25. Quantum coin flipping
- 5.26. Further reading
- 5.27. Problems
- 6. Teleportation and super dense coding
- 6.1. Quantum no-cloning theorem
- 6.2. Teleportation
- 6.3. Super dense coding (or dense coding) (of Bennett and Wiesner)
- 6.4. Further reading
- 6.5. Problems
- 7. Pure and mixed state
- 7.1. Pure state
- 7.2. Mixed state
- 7.3. Density operator (introduced by Von Neumann)
- 7.4. Density operator for a pure state
- 7.5. Average
- 7.6. Density operator of a mixed state (or an ensemble)
- 7.7. Quantum mechanics of an ensemble
- 7.8. Density matrix for a two-level spin system (Stern-Gerlach experiment)
- 7.9. Single-qubit density operator in terms of Pauli matrices
- 7.10. Some illustration of density matrix for pure and mixed states
- 7.11. Partially mixed, completely mixed, maximally mixed states
- 7.12. Time evolution of density matrix : Liouville-Von Neumann equation
- 7.13. Partial trace and the reduced density matrix
- 7.14. Measurement theory of mixed states
- 7.15. Positive operator valued measure (POVM)
- 7.16. Further reading
- 7.17. Problems
- 8. Quantum algorithms
- 8.1. Quantum parallelism
- 8.2. Reversibility
- 8.3. XOR is addition modulo 2
- 8.4. Quantum arithmetic and function evaluations
- 8.5. Deutsch algorithm
- 8.6. Deutsch-Jozsa (DJ) algorithm
- 8.7. Bernstein-Vazirani algorithm
- 8.8. Simon algorithm
- 8.9. Grover's search algorithm
- 8.10. Discrete integral transform
- 8.11. Quantum Fourier transform
- 8.12. Finding period using QFT
- 8.13. Implementation of QFT
- 8.14. Some definitions and GCD evaluation
- 8.15. Inverse modulo
- 8.16. Shor's algorithm
- 8.17. Further reading
- 8.18. Problems
- 9. Quantum error correction
- 9.1. Error in classical computing
- 9.2. Errors in quantum computing/communication
- 9.3. The phase flip
- 9.4. Qubit transmission from Alice to Bob
- 9.5. Converting a phase flip error to qubit flip error
- 9.6. Shor's nine-qubit error code
- 9.7. Further reading
- 9.8. Problems
- 10. Quantum information
- 10.1. Classical information theory
- 10.2. Decision tree
- 10.3. Measure of information : Shannon's entropy
- 10.4. Statistical entropy and Shannon's information entropy
- 10.5. Communication system
- 10.6. Shannon's noiseless coding theorem
- 10.7. Prefix code, binary tree
- 10.8. Quantum information theory, Von Neumann entropy
- 10.9. Further reading
- 10.10. Problems
- 11. EPR paradox and Bell inequalities
- 11.1. EPR paradox
- 11.2. David Bohm's version of EPR paradox (1951)
- 11.3. Bell's (Gedanken) experiment : EPR and Bell's inequalities
- 11.4. Clauser, Horne, Shimony and Holt's inequality
- 11.5. Further reading
- 11.6. Problems
- 12. Cryptography--the art of coding
- 12.1. A bit of history of cryptography
- 12.2. Essential elements of cryptography
- 12.3. One-time pad
- 12.4. RSA cryptosystem
- 12.5. Fermat's little theorem
- 12.6. Euler theorem
- 12.7. Chinese remainder theorem
- 12.8. RSA algorithm
- 12.9. Quantum cryptography
- 12.10. Protocol of quantum cryptography
- 12.11. Further reading
- 12.12. Problems
- 13. Experimental aspects of quantum computing
- 13.1. Basic principle of nuclear magnetic resonance quantum computing
- 13.2. Further reading
- 14. Light-matter interactions
- 14.1. Interaction Hamiltonian
- 14.2. Rabi oscillations
- 14.3. Weak field case
- 14.4. Strong field case : Rabi oscillations
- 14.5. Damping phenomena
- 14.6. The density matrix
- 14.7. Pure and mixed states
- 14.8. Equation of motion of the density operator
- 14.9. Inclusion of decay phenomena
- 14.10. Vector model of density matrix equations of motion
- 14.11. Power broadening and saturation of the spectrum
- 14.12. Spectral line broadening mechanism
- 14.13. Natural broadening
- 14.14. Collision or pressure broadening
- 14.15. Inhomogeneous broadening or Doppler broadening
- 14.16. Further reading
- 14.17. Problems
- 15. Laser spectroscopy and atomic coherence
- 15.1. Moving two-level atoms in a travelling wave field
- 15.2. Moving atoms in a standing wave
- 15.3. Lamb dip
- 15.4. Crossover resonances
- 15.5. Atomic coherence phenomena
- 15.6. EIT Hamiltonian of the system
- 15.7. Dressed states picture
- 15.8. Coherent population trapping
- 15.9. Electromagnetically induced absorption (EIA)
- 15.10. Further reading
- 15.11. Problems
- 16. Quantum theory of radiation
- 16.1. Maxwell's equations
- 16.2. The electromagnetic field in a cavity
- 16.3. Quantization of a single mode
- 16.4. Multimode radiation field
- 16.5. Coherent states
- 16.6. Squeezed states of light
- 16.7. Further reading
- 16.8. Problems
- 17. Interaction of an atom with a quantized field
- 17.1. Interaction Hamiltonian in terms of Pauli operators
- 17.2. Absorption and emission phenomena
- 17.3. Dressed states
- 17.4. Jaynes-Cummings model
- 17.5. Theory of spontaneous emission : Wigner-Weisskopf model
- 17.6. Further reading
- 17.7. Problems
- 18. Photon statistics
- 18.1. Young's double-slit experiment
- 18.2. Hanbury Brown-Twiss experiment
- 18.3. Photon counter
- 18.4. Outcome of the photon counter
- 18.5. Photon statistics of a perfectly coherent light
- 18.6. Photon statistics of a thermal light
- 18.7. Classification of light by second-order correlation function and photon statistics.
- 18.8. Photon bunching and anti-bunching
- 18.9. Further reading
- 18.10. Problems.