Cargando…

Modern quantum mechanics and quantum information /

Modern Quantum Mechanics and Quantum Information surveys the fundamental aspects of quantum mechanics against the backdrop of its use in modern science applications. The book covers several topics in modern quantum mechanics and quantum information that do not appear in older texts.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Faulkner, J. S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750321679
003 IOP
005 20220118101458.0
006 m eo d
007 cr cn |||m|||a
008 220118s2021 enka fob 000 0 eng d
020 |a 9780750321679  |q ebook 
020 |a 9780750321662  |q mobi 
020 |z 9780750321655  |q print 
020 |z 9780750321686  |q myPrint 
024 7 |a 10.1088/978-0-7503-2167-9  |2 doi 
035 |a (CaBNVSL)thg00083107 
035 |a (OCoLC)1294828726 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC174.12  |b .F386 2021eb 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Faulkner, J. S.,  |e author. 
245 1 0 |a Modern quantum mechanics and quantum information /  |c J.S. Faulkner. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2021] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP ebooks. [2021 collection] 
500 |a "Version: 202112"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Review of basics -- 1.1. About quantum mechanics -- 1.2. Hilbert space -- 1.3. Elementary quantum mechanics -- 1.4. Dirac and von Neumann -- 1.5. Rigged Hilbert space -- 1.6. Observables and Hermitean operators -- 1.7. The uncertainty relation -- 1.8. Commuting observables -- 1.9. Unitary operators -- 1.10. The Gaussian wave packet -- 1.11. Two-dimensional Hilbert space -- 1.12. Pairs of spins -- 1.13. Einstein, Podolsky, and Rosen 
505 8 |a 2. Non-relativistic quantum mechanics -- 2.1. Heisenberg's matrix mechanics -- 2.2. The one-dimensional harmonic oscillator -- 2.3. Schrödinger's wave mechanics -- 2.4. The one-dimensional harmonic oscillator (again) -- 2.5. Comparison of Heisenberg and Schrödinger theories -- 2.6. Wave mechanics in three dimensions -- 2.7. Angular momentum -- 2.8. Schrödinger equation for a spherically symmetric potential -- 2.9. Schrödinger equation for the hydrogen atom -- 2.10. Time-dependent wave equation -- 2.11. The time-evolution operator -- 2.12. The time dependence of Heisenberg's operators 
505 8 |a 3. Relativistic quantum mechanics -- 3.1. The necessity for relativistic quantum mechanics -- 3.2. Klein-Gordon equation -- 3.3. Problems with the Klein-Gordon equation -- 3.4. Dirac theory -- 3.5. Proof of the Lorentz covariance of the Dirac equation -- 3.6. The fifth gamma matrix -- 3.7. Free particle solution of the Dirac equation -- 3.8. Angular momentum and spin -- 3.9. The magnetic moment of the electron -- 3.10. Scalar relativistic approximation -- 3.11. The Dirac theory of the hydrogen atom -- 3.12. Advantages and disadvantages 
505 8 |a 4. Symmetry -- 4.1. The importance of symmetry in physics -- 4.2. A simple example -- 4.3. Theory of finite groups -- 4.4. Representations of finite groups -- 4.5. Theory of infinite groups and Lie groups -- 4.6. Continuous groups in physics -- 4.7. Conservation laws from Noether's theorem -- 4.8. Conservation laws from quantum mechanics -- 4.9. Continuous group representations -- 4.10. Groups of a Hamiltonian -- 4.11. Conclusions 
505 8 |a 5. Approximate methods -- 5.1. Rayleigh-Ritz variational method -- 5.2. Time-independent perturbation theory -- 5.3. Time-dependent perturbation theory -- 5.4. The two-level Hamiltonian -- 5.5. Spin magnetic resonance -- 5.6. The maser -- 5.7. Fermi's golden rule -- 5.8. An atom interacting with a plane electromagnetic wave -- 5.9. Approximate methods that use computers 
505 8 |a 6. Scattering and Green's functions -- 6.1. Potential scattering -- 6.2. Position representation -- 6.3. The spherical scatterer -- 6.4. The optical theorem -- 6.5. The Born approximation -- 6.6. Green's function and its adjoint -- 6.7. Green's function with a scatterer -- 6.8. The non-spherical scattering potential with bounded domain -- 6.9. Spectral theory from scattering theory -- 6.10. Krein's theorem 
505 8 |a 7. A practical tool -- 7.1. The exact equations -- 7.2. Pauli exclusion principle -- 7.3. Atomic structure -- 7.4. The hydrogen molecule -- 7.5. Covalent bonding -- 7.6. Ionic bonding -- 7.7. Bonding in metals -- 7.8. Conclusions 
505 8 |a 8. An alternative reality -- 8.1. Gazing in wonder -- 8.2. The Einstein-Podolsky-Rosen experiment -- 8.3. Hidden variables -- 8.4. Bell's inequalities -- 8.5. Double slit interference -- 8.6. The adiabatic theorem -- 8.7. The Bohm-Aharanov phase -- 8.8. The Berry phase -- 8.9. Quantum erasure -- 8.10. Resume 
505 8 |a 9. What does it all mean? -- 9.1. What are we to make of quantum experiments? -- 9.2. The Orthodox Copenhagen interpretation (Bohr) -- 9.3. Bohm's interpretation -- 9.4. The many-worlds interpretation -- 9.5. The Ghirardi-Rimini-Weber (GRW) interpretation -- 9.6. Consistent (decoherent) histories interpretation -- 9.7. Most widely held interpretation -- 9.8. Decoherence -- 9.9. Density matrices -- 9.10. Defining decoherence -- 9.11. Simple example of decoherence -- 9.12. Back to Schrödinger's cat 
505 8 |a 10. Quantum information -- 10.1. Information science -- 10.2. Turing machine -- 10.3. Bits and bytes and Boolean gates -- 10.4. Universality -- 10.5. Measuring information -- 10.6. Landauer's theory of the energy required for calculations -- 10.7. Reversible computing -- 10.8. Universality -- 10.9. Zero power computing -- 10.10. Computational complexity -- 10.11. Quantum devices -- 10.12. Quantum bits (qubits) -- 10.13. Single qubit gates -- 10.14. Random number generator -- 10.15. A two qubit gate -- 10.16. No cloning theorem -- 10.17. Bell or EPR states -- 10.18. Entanglement and disentanglement -- 10.19. Quantum teleportation -- 10.20. Superdense coding -- 10.21. Deutsch's algorithm -- 10.22. Deutsch-Jozsa algorithm -- 10.23. Four-level Deutsch-Jozsa experiment -- 10.24. Discrete Fourier transform -- 10.25. The quantum Fourier transform 
505 8 |a 11. Quantum cryptography -- 11.1. The Caesar cipher -- 11.2. Symmetric key cryptography -- 11.3. Public-key cryptography (asymmetric cryptography) -- 11.4. Modular arithmetic -- 11.5. RSA public key system. Rivest, Shamir, Adleman -- 11.6. Diffie-Hellman key exchange -- 11.7. Discrete logarithm problem -- 11.8. ElGamal -- 11.9. Elliptic curves -- 11.10. The Vernam cipher -- 11.11. Quantum key distribution -- 11.12. Shor factoring algorithm 
505 8 |a 12. Many particle systems -- 12.1. The Schrödinger equation -- 12.2. Hartree theory -- 12.3. Hartree-Fock theory -- 12.4. Configuration interaction (CI) calculations -- 12.5. The electron gas in the Hartree-Fock approximation -- 12.6. Critique of the H-F approximation -- 12.7. Density matrices -- 12.8. Single configuration approximation -- 12.9. The Thomas-Fermi and Thomas-Fermi-Dirac theories -- 12.10. The density functional theory (DFT) -- 12.11. The local density approximation (LDA) -- 12.12. Beyond the density functional theory -- 12.13. Infinite-order perturbation theory and Feynman diagrams -- 12.14. Dielectric function of a degenerate electron gas -- 12.15. Progress requires cooperation. 
520 3 |a Modern Quantum Mechanics and Quantum Information surveys the fundamental aspects of quantum mechanics against the backdrop of its use in modern science applications. The book covers several topics in modern quantum mechanics and quantum information that do not appear in older texts.  
521 |a Upper level undergrad/graduate. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Prof. John Samuel (Sam) Faulkner was born in Memphis, Tennessee. He obtained BS and MS degrees in physics from Auburn University. He was awarded a PhD in physics by The Ohio State University. He has published over 86 journal articles in the area of theoretical condensed matter physics. 
588 0 |a Title from PDF title page (viewed on January 18, 2022). 
650 0 |a Quantum theory. 
650 7 |a Quantum physics (quantum mechanics & quantum field theory)  |2 bicssc 
650 7 |a Quantum science.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750321655  |z 9780750321686 
830 0 |a IOP (Series).  |p Release 21. 
830 0 |a IOP ebooks.  |p 2021 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-2167-9  |z Texto completo