Cargando…

An introduction to fluorescence correlation spectroscopy /

An Introduction to Fluorescence Correlation Spectroscopy represents a comprehensive introduction to fluorescence correlation spectroscopy (FCS), a biophysical experimental technique increasingly used to study and quantify molecular mobility, concentrations and interactions in vitro, as well as in li...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wohland, Thorsten (Autor), Maiti, Sudipta (Autor), Macháň, Radek (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:Biophysical Society-IOP series.
IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. What is fluorescence correlation spectroscopy all about?
  • 1.2. What do 'fluorescence', 'correlation' and 'spectroscopy' have to do with measuring change?
  • 1.3. What can FCS do for you?
  • 1.4. What does an FCS measurement involve?
  • 1.5. A brief history of FCS
  • 1.6. Critical technical steps of the revolution
  • 1.7. Where is FCS now?
  • 2. Correlation functions
  • 2.1. Introduction
  • 2.2. Fluctuations
  • 2.3. Correlations
  • 2.4. From correlation coefficient to correlation function
  • 2.5. The autocorrelation function (ACF) and its properties
  • 2.6. The cross-correlation function (CCF) and its properties
  • 2.7. Fluctuations and correlations
  • 2.8. Synopsis
  • 2.9. Exercises
  • 3. Fluorescence excitation and detection
  • 3.1. The probe volume in FCS
  • 3.2. Photon detection
  • 3.3. Exercises
  • 4. Data structure, correlation and processing
  • 4.1. Software correlators
  • 4.2. Hardware correlators and their comparison with software correlators
  • 4.3. Temporal resolution of correlation functions
  • 4.4. Statistical filtering in correlation function calculation
  • 4.5. Synopsis
  • 4.6. Exercises
  • 5. Theoretical FCS models
  • 5.1. The autocorrelation function for diffusion
  • 5.2. General characteristics of the ACF for diffusion
  • 5.3. Including multiple particles
  • 5.4. Anomalous diffusion
  • 5.5. Flow
  • 5.6. Including multiple processes
  • 5.7. Spatial and spatiotemporal correlation techniques
  • 5.8. Other FCS modalities
  • 5.9. Synopsis
  • 5.10. Exercises
  • 6. Theoretical fluorescence cross-correlation spectroscopy (FCCS) models
  • 6.1. Introduction
  • 6.2. Dual-colour FCCS (DC-FCCS)
  • 6.3. FCCS modalities derived from DC-FCCS
  • 6.4. Statistical filtering in FCCS
  • 6.5. Synopsis
  • 6.6. Exercises
  • 7. Artefacts in FCS
  • 7.1. Background
  • 7.2. Rare events
  • 7.3. Bleaching
  • 7.4. Sample movement
  • 7.5. Detector-related artefacts : after-pulsing and dead time
  • 7.6. Detector saturation
  • 7.7. Fluorophore saturation
  • 7.8. Scattering
  • 7.9. Autofluorescence
  • 7.10. Sample topology
  • 7.11. Immobile particles
  • 7.12. Refractive index mismatch
  • 7.13. Exercises
  • 8. Data fitting
  • 8.1. Introduction
  • 8.2. What do we minimize?
  • 8.3. The data structure and bias in FCS
  • 8.4. The standard deviation in FCS
  • 8.5. Non-linear least squares fit
  • 8.6. Generalized least squares fit
  • 8.7. Global fit
  • 8.8. Maximum entropy method
  • 8.9. Pairwise model selection using the F-test
  • 8.10. Bayes model selection
  • 8.11. Practical aspects
  • 8.12. Synopsis
  • 8.13. Exercises
  • 9. FCS and FCCS measurement strategies
  • 9.1. Measuring concentrations by FCS
  • 9.2. Characterising molecular diffusion by FCS
  • 9.3. Molecular interactions studies by FCS
  • 9.4. Molecular interactions studies by FCCS
  • 9.5. Synopsis
  • 9.6. Exercises
  • 10. Where to go from here?
  • 10.1. Introduction
  • 10.2. What FCS can and cannot do
  • 10.3. Data acquisition
  • 10.4. Data analysis
  • 10.5. Related techniques
  • 10.6. Some final remarks.