An introduction to fluorescence correlation spectroscopy /
An Introduction to Fluorescence Correlation Spectroscopy represents a comprehensive introduction to fluorescence correlation spectroscopy (FCS), a biophysical experimental technique increasingly used to study and quantify molecular mobility, concentrations and interactions in vitro, as well as in li...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | Biophysical Society-IOP series.
IOP ebooks. 2020 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. What is fluorescence correlation spectroscopy all about?
- 1.2. What do 'fluorescence', 'correlation' and 'spectroscopy' have to do with measuring change?
- 1.3. What can FCS do for you?
- 1.4. What does an FCS measurement involve?
- 1.5. A brief history of FCS
- 1.6. Critical technical steps of the revolution
- 1.7. Where is FCS now?
- 2. Correlation functions
- 2.1. Introduction
- 2.2. Fluctuations
- 2.3. Correlations
- 2.4. From correlation coefficient to correlation function
- 2.5. The autocorrelation function (ACF) and its properties
- 2.6. The cross-correlation function (CCF) and its properties
- 2.7. Fluctuations and correlations
- 2.8. Synopsis
- 2.9. Exercises
- 3. Fluorescence excitation and detection
- 3.1. The probe volume in FCS
- 3.2. Photon detection
- 3.3. Exercises
- 4. Data structure, correlation and processing
- 4.1. Software correlators
- 4.2. Hardware correlators and their comparison with software correlators
- 4.3. Temporal resolution of correlation functions
- 4.4. Statistical filtering in correlation function calculation
- 4.5. Synopsis
- 4.6. Exercises
- 5. Theoretical FCS models
- 5.1. The autocorrelation function for diffusion
- 5.2. General characteristics of the ACF for diffusion
- 5.3. Including multiple particles
- 5.4. Anomalous diffusion
- 5.5. Flow
- 5.6. Including multiple processes
- 5.7. Spatial and spatiotemporal correlation techniques
- 5.8. Other FCS modalities
- 5.9. Synopsis
- 5.10. Exercises
- 6. Theoretical fluorescence cross-correlation spectroscopy (FCCS) models
- 6.1. Introduction
- 6.2. Dual-colour FCCS (DC-FCCS)
- 6.3. FCCS modalities derived from DC-FCCS
- 6.4. Statistical filtering in FCCS
- 6.5. Synopsis
- 6.6. Exercises
- 7. Artefacts in FCS
- 7.1. Background
- 7.2. Rare events
- 7.3. Bleaching
- 7.4. Sample movement
- 7.5. Detector-related artefacts : after-pulsing and dead time
- 7.6. Detector saturation
- 7.7. Fluorophore saturation
- 7.8. Scattering
- 7.9. Autofluorescence
- 7.10. Sample topology
- 7.11. Immobile particles
- 7.12. Refractive index mismatch
- 7.13. Exercises
- 8. Data fitting
- 8.1. Introduction
- 8.2. What do we minimize?
- 8.3. The data structure and bias in FCS
- 8.4. The standard deviation in FCS
- 8.5. Non-linear least squares fit
- 8.6. Generalized least squares fit
- 8.7. Global fit
- 8.8. Maximum entropy method
- 8.9. Pairwise model selection using the F-test
- 8.10. Bayes model selection
- 8.11. Practical aspects
- 8.12. Synopsis
- 8.13. Exercises
- 9. FCS and FCCS measurement strategies
- 9.1. Measuring concentrations by FCS
- 9.2. Characterising molecular diffusion by FCS
- 9.3. Molecular interactions studies by FCS
- 9.4. Molecular interactions studies by FCCS
- 9.5. Synopsis
- 9.6. Exercises
- 10. Where to go from here?
- 10.1. Introduction
- 10.2. What FCS can and cannot do
- 10.3. Data acquisition
- 10.4. Data analysis
- 10.5. Related techniques
- 10.6. Some final remarks.