A modern course in quantum field theory. Volume 2, Advanced topics /
A Modern Course in Quantum Field Theory provides a self-contained pedagogical and constructive presentation of quantum field theory. Here, constructive is not meant in the sense of axiomatic field theory, but it is merely used in the sense that all results must be obtained by an explicit set of calc...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 9. Standard model
- 9.1. Elements of phenomenology
- 9.2. The standard model
- 9.3. Exercises
- 10. Introduction to lattice field theory
- 10.1. The lattice [phi]2
- 10.2. Fermions on the lattice
- 10.3. Gauge fields on the lattice
- 10.4. Quenched quantum electrodynamics on the lattice
- 11. The Wilson and functional renormalization group equations
- 11.1. Wilson renormalization group approach
- 11.2. The Wilson approximate recursion formulas
- 11.3. Generating functionals
- 11.4. The functional renormalization group
- 11.5. The vertex expansion approximation method for [phi]4
- 11.6. The gradient expansion approximation method
- 11.7. Polchinski's renormalization of [phi]4 theory
- 11.8. Exercise
- 12. Noncommutative scalar field theory and its renormalizability
- 12.1. Noncommutative Moyal-Weyl spaces
- 12.2. Wilson-Polchinski renormalization group equation on RD x R2
- 12.3. Renormalization of scalar [phi]4 in two dimensions
- 12.4. Renormalization of scalar [phi]4 in four dimensions with a harmonic oscillator term
- 13. Some exact solutions of quantum field theory
- 13.1. The linear sigma model and Hartree-Fock approximation
- 13.2. The non-linear sigma model and the 1/N expansion
- 13.3. The Ising model and the Onsager solution
- 13.4. QED2 and the Thirring and sine-Gordon models
- 13.5. Other exactly solvable models
- 13.6. Exercise
- 14. The monopoles and instantons
- 14.1. Monopoles
- 14.2. Instantons
- 14.3. Exercises
- 15. Introducing supersymmetry
- 15.1. Lorentz symmetry revisited
- 15.2. Supersymmetry algebra and representations
- 15.3. N = 1 supersymmetry
- 15.4. N = 2 supersymmetry
- 15.5. Simple supersymmetry in more detail
- 15.6. Exercises
- 16. The AdS/CFT correspondence
- 16.1. Conformal symmetry
- 16.2. The AdS spacetime
- 16.3. Scalar field in AdSd+1
- 16.4. Representation theory of the conformal group
- 16.5. Holography
- 16.6. The AdS/CFT correspondence
- 16.7. Conformal field theory on the torus
- 16.8. Holographic entanglement entropy
- 16.9. Einstein's gravity from quantum entanglement
- 16.10. Exercises
- Appendices. D. Lie algebra representation theory : a primer
- E. On homotopy theory.