1D and multi-D modeling techniques for IC engine simulation /
This book provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Warrendale, Pennsylvania :
SAE International,
[2020]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Table of Contents
- Preface
- About the Editors
- CHAPTER 1 State of the Art of 1D Thermo-Fluid Dynamic Simulation Models
- 1.1 Recent Advances in IC Engines and Future Perspectives
- 1.2 The Key Role of IC Engine Simulation Models
- 1.3 Brief History of Wave Dynamics
- 1.4 IC Engine Gas Dynamics
- 1.5 Overview of IC Engine 1D Simulation Codes
- 1.6 Conservation Equations
- 1.6.1 Perfect Gas Assumption
- 1.6.2 Transport of Chemical Species with Reactions
- Definitions, Acronyms, and Abbreviations
- References
- CHAPTER 2 Virtual Engine Development: 1D- and 3D-CFD up to Full Engine Simulation
- 2.1 Introduction
- 2.2 Model Requirements
- 2.3 Assessment of Quasidimensional Models
- 2.3.1 General Assessment Guidelines
- 2.3.2 Practical Examples for SI Engines
- 2.3.2.1 BURN RATE MODEL
- 2.3.2.2 TURBULENCE/CHARGE MOTION MODEL
- 2.3.2.3 LAMINAR FLAME SPEED MODEL
- 2.3.2.4 FLAME GEOMETRY MODEL
- 2.3.2.5 CCV MODEL
- 2.3.2.6 KNOCK MODEL
- 2.3.2.7 NOx MODEL
- 2.3.3 Practical Examples for CI Engines
- 2.3.3.1 BURN RATE/INJECTION MODEL
- 2.3.3.2 WALL HEAT MODEL
- 2.3.3.3 EMISSION MODELS
- 2.4 Assessment of 3D Models (for Fast-Response 3D-CFD Simulations)
- 2.4.1 Model and Calculation Layout in an Innovative Fast-Response 3D-CFD Tool
- 2.4.1.1 TEST BENCH AND LABORATORY ENVIRONMENT
- 2.4.1.2 ZERO-DIMENSIONAL ENVIRONMENT
- 2.4.1.3 3D-CFD ENVIRONMENT
- 2.4.2 New Developed 3D-CFD Models
- 2.4.2.1 3D-CFD ENGINE HEAT TRANSFER
- 2.5 Basics of Engine Design
- 2.5.1 Full Load Design for SI Engines
- 2.5.2 Full Load Design for CI Engines
- 2.6 Application Examples
- 2.6.1 Example 1: Vehicle Acceleration Simulation and Cross-Comparison of Different Engine Concepts
- 2.6.2 Example 2: Tuning of 1D Flow Model
- 2.6.3 Example 3: Virtual Development of a High-Performance CNG Engine, Full Engine Simulations with a Fast-Response 3D-CFD Tool
- 2.6.3.1 RESULTS (ENGINE DEVELOPMENT STEP 0)
- 2.6.3.2 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 1)
- 2.6.3.3 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 2)
- Abbreviations
- References
- CHAPTER 3 Advanced 0D and QuasiD Thermodynamic Combustion Models for SI and CI Engines
- 3.1 Physical Background (Combustion Regimes for SI and CI Engines)
- 3.1.1 Auto-Ignition
- 3.1.2 Premixed Flames
- 3.1.2.1 LAMINAR
- 3.1.2.2 TURBULENT
- 3.1.2.2.1 Turbulence Reynolds Number
- 3.1.2.2.2 Damköhler Number
- 3.1.2.2.3 Karlovitz Number
- 3.1.3 Diffusion Flames
- 3.1.3.1 LAMINAR
- 3.1.3.1.1 Decompositions into Mixing and Flame Structure Problems
- 3.1.3.1.2 Fuel Mixture Fraction
- 3.1.3.1.3 Scalar Dissipation Rate
- 3.1.3.1.4 Chemical-Kinetics Time Scale
- 3.1.3.1.5 Damköhler Number in the Diffusion Flames
- 3.1.3.1.6 Flame Structure
- 3.1.3.2 TURBULENT
- 3.2 SI Engines Modeling
- 3.2.1 Combustion Models for SI Engines
- 3.2.1.1 SINGLE ZONE
- 3.2.1.2 TWO ZONES
- 3.2.1.3 EDDY BURN-UP
- 3.2.1.4 FRACTAL APPROACH