Cargando…

1D and multi-D modeling techniques for IC engine simulation /

This book provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Onorati, Angelo (Autor), Montenegro, Gianluca (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Warrendale, Pennsylvania : SAE International, [2020]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Table of Contents
  • Preface
  • About the Editors
  • CHAPTER 1 State of the Art of 1D Thermo-Fluid Dynamic Simulation Models
  • 1.1 Recent Advances in IC Engines and Future Perspectives
  • 1.2 The Key Role of IC Engine Simulation Models
  • 1.3 Brief History of Wave Dynamics
  • 1.4 IC Engine Gas Dynamics
  • 1.5 Overview of IC Engine 1D Simulation Codes
  • 1.6 Conservation Equations
  • 1.6.1 Perfect Gas Assumption
  • 1.6.2 Transport of Chemical Species with Reactions
  • Definitions, Acronyms, and Abbreviations
  • References
  • CHAPTER 2 Virtual Engine Development: 1D- and 3D-CFD up to Full Engine Simulation
  • 2.1 Introduction
  • 2.2 Model Requirements
  • 2.3 Assessment of Quasidimensional Models
  • 2.3.1 General Assessment Guidelines
  • 2.3.2 Practical Examples for SI Engines
  • 2.3.2.1 BURN RATE MODEL
  • 2.3.2.2 TURBULENCE/CHARGE MOTION MODEL
  • 2.3.2.3 LAMINAR FLAME SPEED MODEL
  • 2.3.2.4 FLAME GEOMETRY MODEL
  • 2.3.2.5 CCV MODEL
  • 2.3.2.6 KNOCK MODEL
  • 2.3.2.7 NOx MODEL
  • 2.3.3 Practical Examples for CI Engines
  • 2.3.3.1 BURN RATE/INJECTION MODEL
  • 2.3.3.2 WALL HEAT MODEL
  • 2.3.3.3 EMISSION MODELS
  • 2.4 Assessment of 3D Models (for Fast-Response 3D-CFD Simulations)
  • 2.4.1 Model and Calculation Layout in an Innovative Fast-Response 3D-CFD Tool
  • 2.4.1.1 TEST BENCH AND LABORATORY ENVIRONMENT
  • 2.4.1.2 ZERO-DIMENSIONAL ENVIRONMENT
  • 2.4.1.3 3D-CFD ENVIRONMENT
  • 2.4.2 New Developed 3D-CFD Models
  • 2.4.2.1 3D-CFD ENGINE HEAT TRANSFER
  • 2.5 Basics of Engine Design
  • 2.5.1 Full Load Design for SI Engines
  • 2.5.2 Full Load Design for CI Engines
  • 2.6 Application Examples
  • 2.6.1 Example 1: Vehicle Acceleration Simulation and Cross-Comparison of Different Engine Concepts
  • 2.6.2 Example 2: Tuning of 1D Flow Model
  • 2.6.3 Example 3: Virtual Development of a High-Performance CNG Engine, Full Engine Simulations with a Fast-Response 3D-CFD Tool
  • 2.6.3.1 RESULTS (ENGINE DEVELOPMENT STEP 0)
  • 2.6.3.2 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 1)
  • 2.6.3.3 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 2)
  • Abbreviations
  • References
  • CHAPTER 3 Advanced 0D and QuasiD Thermodynamic Combustion Models for SI and CI Engines
  • 3.1 Physical Background (Combustion Regimes for SI and CI Engines)
  • 3.1.1 Auto-Ignition
  • 3.1.2 Premixed Flames
  • 3.1.2.1 LAMINAR
  • 3.1.2.2 TURBULENT
  • 3.1.2.2.1 Turbulence Reynolds Number
  • 3.1.2.2.2 Damköhler Number
  • 3.1.2.2.3 Karlovitz Number
  • 3.1.3 Diffusion Flames
  • 3.1.3.1 LAMINAR
  • 3.1.3.1.1 Decompositions into Mixing and Flame Structure Problems
  • 3.1.3.1.2 Fuel Mixture Fraction
  • 3.1.3.1.3 Scalar Dissipation Rate
  • 3.1.3.1.4 Chemical-Kinetics Time Scale
  • 3.1.3.1.5 Damköhler Number in the Diffusion Flames
  • 3.1.3.1.6 Flame Structure
  • 3.1.3.2 TURBULENT
  • 3.2 SI Engines Modeling
  • 3.2.1 Combustion Models for SI Engines
  • 3.2.1.1 SINGLE ZONE
  • 3.2.1.2 TWO ZONES
  • 3.2.1.3 EDDY BURN-UP
  • 3.2.1.4 FRACTAL APPROACH