|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1162201283 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
120511s2012 nyua ob 001 0 eng |
010 |
|
|
|a 2020687153
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d OCLCF
|d VLY
|d OCLCO
|d N$T
|d YDXCP
|d E7B
|d EBLCP
|d AGLDB
|d VTS
|d AU@
|d STF
|d K6U
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 834136766
|
020 |
|
|
|a 9781620816325
|q ebook
|
020 |
|
|
|a 1620816326
|
020 |
|
|
|z 9781620815991
|q hardcover
|
020 |
|
|
|z 1620815990
|
029 |
1 |
|
|a DEBBG
|b BV043775429
|
029 |
1 |
|
|a DEBSZ
|b 472778900
|
029 |
1 |
|
|a NZ1
|b 15021843
|
035 |
|
|
|a (OCoLC)1162201283
|z (OCoLC)834136766
|
050 |
0 |
0 |
|a TA460
|
072 |
|
7 |
|a TEC
|x 013000
|2 bisacsh
|
082 |
0 |
0 |
|a 620.1/126
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Fatigue crack growth :
|b mechanisms, behavior, and analysis /
|c Ping Tang and Jim Leor Zhang, editors.
|
264 |
|
1 |
|a New York :
|b Nova Publishers,
|c c2012.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mechanical engineering theory and applications
|
490 |
1 |
|
|a Engineering tools, techniques and tables
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record.
|
546 |
|
|
|a English.
|
505 |
0 |
|
|a FATIGUE CRACK GROWTH: MECHANISMS, BEHAVIOR AND ANALYSIS; FATIGUE CRACK GROWTH: MECHANISMS, BEHAVIOR AND ANALYSIS; Library of Congress Cataloging-in-Publication Data; CONTENTS; PREFACE; Chapter 1: THE UNIFIED FATIGUE CRACK GROWTH RATE MODEL; 1. INTRODUCTION; 2. THE GENERAL IDEA OF THE UNIFIED FATIGUE LIFE PREDICTION METHOD; 3. THE TECHNICAL PROBLEMS TO BE SOLVED FOR DEVELOPING A UFCGR MODEL; 3.1. Crack Driving Forces; 3.2. Function Format; 3.3. The Threshold Condition; 3.4. The Unstable Fracture Condition; 4. OUR OWN WORK ON THE DEVELOPMENT FOR A UFCGR MODEL; 4.1. Development of a UFCGR.
|
505 |
8 |
|
|a 4.2. The Improved Crack Growth Rate Model under VA Loading4.3. Engineering Methods to Estimate Model Parameters; 4.4. Capabilities of the UFCGR; 5. FURTHER IMPROVEMENTS FOR THE DEVELOPMENTOF THE UNIFIED FATIGUE LIFE PREDICTION METHOD; CONCLUSION; REFERENCES; Chapter 2: EFFECT OF HYDROGEN ENVIRONMENT ON FATIGUE BEHAVIOUR OF HIGH TOUGHNESS STEELS; ABSTRACT; INTRODUCTION; 1. MATERIALS; 2. EXPERIMENTAL PROCEDURE; 3. FATIGUE TEST; 3.1. Fatigue Test Results: F22 Steel; 3.2. Fatigue Test Results: X65 Steel; 3.3. Remarks on Results; 4. FRACTOGRAPHIC ANALYSIS.
|
505 |
8 |
|
|a 4.1. Macro and Micrographic Examination: F22 Steel4.2. Macro and Micrographic Examination: X65 Steel; 5. MODEL TO EVALUATE THE FATIGUE CRACK GROWTH; 5.1. Theory of the Model; 5.2. Analytical Procedure; 5.3. Results; 5.4. Application of the Model to an Actual Crack-Like Pipelines Defect; CONCLUSION; ACKNOWLEDGMENTS; REFERENCES; Chapter 3: PRACTICAL TOOLS FOR STATISTICAL FATIGUE DESIGN; NOMENCLATURE; 1. INTRODUCTION; 2. TECHNOLOGICAL SIZE EFFECTS ; 3. STATISTICAL METHODS; 3.1. Distribution of Maximum and Minimum in a Sample; 3.2. The Generalized Extreme Value Distribution.
|
505 |
8 |
|
|a 4. PREDICTING THE STATISTICAL SIZE EFFECT IN FATIGUE LIMIT4.1. Background; 4.2. Connection between Crack Size and Endurance Limit; 4.3. Calculating the Size Effect; 4.4. Sample Calculation; 4.5. Considering Technological Effects; 4.6. Effective Stress Area; 4.7. Effective Stress Area of Notched Specimens; 4.8. The Statistical Size Effect Factor; 4.9. Sample Cases; 5. GEOMETRIC SIZE EFFECT; 5.1. Sample Calculation; 6. PREDICTING THE FATIGUE INITIATION LIFE; 6.1. Introduction; 6.2. Predicting Fatigue Crack Initiation Life; 6.3. Sample Calculation Procedure with nth Order Statistics.
|
505 |
8 |
|
|a 6.4. Sample Calculation Procedure Using GEV6.5. Crack Initiation Charts; 7. CREATING FATIGUE DESIGN CHARTS; REFERENCES; Chapter 4: PROBABILISTIC FATIGUE CRACK GROWTHANALYSES USING THE BOUNDARY ELEMENTMETHOD AND RELIABILITY ALGORITHMS:PROBABILISTIC ALGORITHMS PERFORMANCEEVALUATION AND APPLICATIONIN MULTI-FRACTURED STRUCTURES; ABSTRACT; INTRODUCTION; LINEAR ELASTIC FRACTURE MECHANICS AND FATIGUE MODELS; BOUNDARY INTEGRAL EQUATIONS; BEM ALGEBRAIC EQUATIONS; RELIABILITY ANALYSIS; COUPLED MECHANICAL AND RELIABILITY PROCEDURES; APPLICATIONS; CONCLUSION; ACKNOWLEDGMENTS; REFERENCES.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Metals
|x Fatigue.
|
650 |
|
0 |
|a Fracture mechanics.
|
650 |
|
6 |
|a Métaux
|x Fatigue.
|
650 |
|
6 |
|a Mécanique de la rupture.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Fracture Mechanics.
|2 bisacsh
|
650 |
|
7 |
|a Fracture mechanics.
|2 fast
|0 (OCoLC)fst00933536
|
650 |
|
7 |
|a Metals
|x Fatigue.
|2 fast
|0 (OCoLC)fst01018111
|
700 |
1 |
|
|a Tang, Ping,
|d 1976-
|
700 |
1 |
|
|a Leor Zhang, Jm.
|
776 |
0 |
8 |
|i Print version:
|t Fatigue crack growth
|d New York : Nova Publishers, c2012.
|z 9781620815991 (hardcover)
|w (DLC) 2012013581
|
830 |
|
0 |
|a Mechanical engineering theory and applications.
|
830 |
|
0 |
|a Engineering tools, techniques and tables.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541341
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3021168
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10681368
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 541341
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9370086
|
994 |
|
|
|a 92
|b IZTAP
|