Cargando…

Multilayer perceptrons : theory and applications /

"Multilayer Perceptrons: Theory and Applications opens with a review of research on the use of the multilayer perceptron artificial neural network method for solving ordinary/partial differential equations, accompanied by critical comments. A historical perspective on the evolution of the multi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Vang-Mata, Ruth (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers, 2020.
Colección:Computer Science, Technology and Applications Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000008i 4500
001 EBSCO_on1143762266
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 200114s2020 nyu ob 001 0 eng
010 |a  2020001381 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCF  |d N$T  |d BNG  |d EBLCP  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1144878972 
020 |a 1536173657 
020 |a 9781536173659  |q (electronic bk.) 
020 |z 9781536173642 
020 |z 1536173649 
035 |a (OCoLC)1143762266  |z (OCoLC)1144878972 
042 |a pcc 
050 0 0 |a QA76.87 
082 0 0 |a 006.3/20151534  |2 23 
049 |a UAMI 
245 0 0 |a Multilayer perceptrons :  |b theory and applications /  |c Ruth Vang-Mata, editor. 
264 1 |a Hauppauge, New York :  |b Nova Science Publishers,  |c 2020. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 1 |a Computer Science, Technology and Applications Ser. 
504 |a Includes bibliographical references and index. 
520 |a "Multilayer Perceptrons: Theory and Applications opens with a review of research on the use of the multilayer perceptron artificial neural network method for solving ordinary/partial differential equations, accompanied by critical comments. A historical perspective on the evolution of the multilayer perceptron neural network is provided. Furthermore, the foundation for automated post-processing that is imperative for consolidating the signal data to a feature set is presented. In one study, panoramic dental x-ray images are used to estimate age and gender. These images were subjected to image pre-processing techniques to achieve better results. In a subsequent study, a multilayer perceptrons artificial neural network with one hidden layer and trained through the efficient resilient backpropagation algorithm is used for modeling quasi-fractal patch antennas. Later, the authors propose a scheme with eight steps for a dynamic time series forecasting using an adaptive multilayer perceptron with minimal complexity. Two different data sets from two different countries were used in the experiments to measure the robustness and accuracy of the models. In closing, a multilayer perceptron artificial neural network with a layer of hidden neurons is trained with the resilient backpropagation algorithm, and the network is used to model a Koch pre-fractal patch antenna"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 0 |a Differential equations  |x Data processing. 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Équations différentielles  |x Informatique. 
650 7 |a Differential equations  |x Data processing  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
700 1 |a Vang-Mata, Ruth,  |e editor. 
776 0 8 |i Print version:  |t Multilayer perceptrons  |d Hauppauge, New York : Nova Science Publishers, 2020.  |z 9781536173642  |w (DLC) 2020001380 
830 0 |a Computer Science, Technology and Applications Ser. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2334556  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 301145167 
938 |a EBSCOhost  |b EBSC  |n 2334556 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6129355 
994 |a 92  |b IZTAP