Cargando…

Supervised Machine Learning with Python : Develop Rich Python Coding Practices While Exploring Supervised Machine Learning.

A supervised learning task infers a function from flagged training data and maps an input to an output based on sample input-output pairs. In this book, you will learn various machine learning techniques (such as linear and logistic regression) and gain the practical knowledge you need to quickly an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smith, Taylor, 1953-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1103218822
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190622s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d EBLCP  |d TEFOD  |d OCLCF  |d OCLCQ  |d YDX  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCA  |d OCLCQ  |d NLW  |d OCLCO  |d UKMGB  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC221797  |2 bnb 
016 7 |a 019431564  |2 Uk 
019 |a 1103221777 
020 |a 1838823069 
020 |a 9781838823061  |q (electronic bk.) 
020 |z 9781838825669  |q print 
029 1 |a CHNEW  |b 001059040 
029 1 |a CHVBK  |b 56975643X 
029 1 |a UKMGB  |b 019431564 
035 |a (OCoLC)1103218822  |z (OCoLC)1103221777 
037 |a 97E0ADCA-B7A9-423A-936A-962EE82B95D2  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Smith, Taylor,  |d 1953- 
245 1 0 |a Supervised Machine Learning with Python :  |b Develop Rich Python Coding Practices While Exploring Supervised Machine Learning. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (156 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributor; Table of Contents; Preface; Chapter 1: First Step Towards Supervised Learning; Technical requirements; An example of supervised learning in action; Logistic regression; Setting up the environment; Supervised learning; Hill climbing and loss functions; Loss functions; Measuring the slope of a curve; Measuring the slope of an Nd-curve; Measuring the slope of multiple functions; Hill climbing and descent; Model evaluation and data splitting; Out-of-sample versus in-sample evaluation; Splitting made easy; Summary 
505 8 |a Chapter 2: Implementing Parametric ModelsTechnical requirements; Parametric models; Finite-dimensional models; The characteristics of parametric learning algorithms; Parametric model example; Implementing linear regression from scratch; The BaseSimpleEstimator interface; Logistic regression models; The concept; The math; The logistic (sigmoid) transformation; The algorithm; Creating predictions; Implementing logistic regression from scratch; Example of logistic regression; The pros and cons of parametric models; Summary; Chapter 3: Working with Non-Parametric Models; Technical requirements 
505 8 |a The bias/variance trade-offError terms; Error due to bias; Error due to variance; Learning curves; Strategies for handling high bias; Strategies for handling high variance; Introduction to non-parametric models and decision trees; Non-parametric learning; Characteristics of non-parametric learning algorithms; Is a model parametric or not?; An intuitive example -- decision tree; Decision trees -- an introduction; How do decision trees make decisions?; Decision trees; Splitting a tree by hand; If we split on x1; If we split on x2; Implementing a decision tree from scratch; Classification tree 
505 8 |a Regression treeVarious clustering methods; What is clustering?; Distance metrics; KNN -- introduction; KNN -- considerations; A classic KNN algorithm; Implementing KNNs from scratch; KNN clustering; Non-parametric models -- pros/cons; Pros of non-parametric models; Cons of non-parametric models; Which model to use?; Summary; Chapter 4: Advanced Topics in Supervised Machine Learning; Technical requirements; Recommended systems and an introduction to collaborative filtering; Item-to-item collaborative filtering; Matrix factorization; Matrix factorization in Python; Limitations of ALS 
505 8 |a Content-based filteringLimitations of content-based systems; Neural networks and deep learning; Tips and tricks for training a neural network; Neural networks; Using transfer learning; Summary; Other Books You May Enjoy; Index 
520 |a A supervised learning task infers a function from flagged training data and maps an input to an output based on sample input-output pairs. In this book, you will learn various machine learning techniques (such as linear and logistic regression) and gain the practical knowledge you need to quickly and powerfully apply algorithms to new problems. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Algorithms & data structures.  |2 bicssc 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Programming  |x Algorithms.  |2 bisacsh 
650 7 |a Computers  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Smith, Taylor.  |t Supervised Machine Learning with Python : Develop Rich Python Coding Practices While Exploring Supervised Machine Learning.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781838825669 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2145644  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36354170 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5781049 
938 |a EBSCOhost  |b EBSC  |n 2145644 
938 |a YBP Library Services  |b YANK  |n 300569079 
994 |a 92  |b IZTAP