Cargando…

Machine Learning in Java : Helpful Techniques to Design, Build, and Deploy Powerful Machine Learning Applications in Java, 2nd Edition.

Machine Learning in Java will provide you with the techniques and tools you need to quickly gain insight from complex data. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bhatia, AshishSingh
Otros Autores: Kaluza, Bostjan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1078552570
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 181208s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d YDX  |d UKAHL  |d N$T  |d OCLCF  |d OCLCQ  |d UKMGB  |d OCLCQ  |d K6U  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB9B0931  |2 bnb 
016 7 |a 019164475  |2 Uk 
019 |a 1078412205  |a 1104790395  |a 1108698978  |a 1152039458  |a 1241924748  |a 1275081193 
020 |a 9781788473897 
020 |a 1788473892 
020 |z 1788474392 
020 |z 9781788474399 
029 1 |a UKMGB  |b 019164475 
035 |a (OCoLC)1078552570  |z (OCoLC)1078412205  |z (OCoLC)1104790395  |z (OCoLC)1108698978  |z (OCoLC)1152039458  |z (OCoLC)1241924748  |z (OCoLC)1275081193 
037 |a 9781788473897  |b Packt Publishing 
050 4 |a QA76.73.J38 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Bhatia, AshishSingh. 
245 1 0 |a Machine Learning in Java :  |b Helpful Techniques to Design, Build, and Deploy Powerful Machine Learning Applications in Java, 2nd Edition. 
250 |a 2nd ed. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (290 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Contributors; About Packt; Table of Contents; Preface; Chapter 1: Applied Machine Learning Quick Start; Machine learning and data science; Solving problems with machine learning; Applied machine learning workflow; Data and problem definition; Measurement scales; Data collection; Finding or observing data; Generating data; Sampling traps; Data preprocessing; Data cleaning; Filling missing values; Remove outliers; Data transformation; Data reduction; Unsupervised learning; Finding similar items; Euclidean distances; Non-Euclidean distances 
505 8 |a The curse of dimensionalityClustering; Supervised learning; Classification; Decision tree learning; Probabilistic classifiers; Kernel methods; Artificial neural networks; Ensemble learning; Evaluating classification; Precision and recall; Roc curves; Regression; Linear regression; Logistic regression; Evaluating regression; Mean squared error; Mean absolute error; Correlation coefficient; Generalization and evaluation; Underfitting and overfitting; Train and test sets; Cross-validation; Leave-one-out validation; Stratification; Summary 
505 8 |a Chapter 2: Java Libraries and Platforms for Machine LearningThe need for Java; Machine learning libraries; Weka; Java machine learning; Apache Mahout; Apache Spark; Deeplearning4j; MALLET; The Encog Machine Learning Framework; ELKI; MOA; Comparing libraries; Building a machine learning application; Traditional machine learning architecture; Dealing with big data; Big data application architecture; Summary; Chapter 3: Basic Algorithms -- Classification, Regression, and Clustering; Before you start; Classification; Data; Loading data; Feature selection; Learning algorithms; Classifying new data 
505 8 |a Evaluation and prediction error metricsThe confusion matrix; Choosing a classification algorithm; Classification using Encog; Classification using massive online analysis; Evaluation; Baseline classifiers; Decision tree; Lazy learning; Active learning; Regression; Loading the data; Analyzing attributes; Building and evaluating the regression model; Linear regression; Linear regression using Encog; Regression using MOA; Regression trees; Tips to avoid common regression problems; Clustering; Clustering algorithms; Evaluation; Clustering using Encog; Clustering using ELKI; Summary 
505 8 |a Chapter 4: Customer Relationship Prediction with EnsemblesThe customer relationship database; Challenge; Dataset; Evaluation; Basic Naive Bayes classifier baseline; Getting the data; Loading the data; Basic modeling; Evaluating models; Implementing the Naive Bayes baseline; Advanced modeling with ensembles; Before we start; Data preprocessing; Attribute selection; Model selection; Performance evaluation; Ensemble methods -- MOA; Summary; Chapter 5: Affinity Analysis; Market basket analysis; Affinity analysis; Association rule learning; Basic concepts; Database of transactions; Itemset and rule 
500 |a Support 
520 |a Machine Learning in Java will provide you with the techniques and tools you need to quickly gain insight from complex data. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. 
506 1 |a Legal Deposit;  |c Only available on premises controlled by the deposit library and to one user at any one time;  |e The Legal Deposit Libraries (Non-Print Works) Regulations (UK).  |5 WlAbNL 
540 |a Restricted: Printing from this resource is governed by The Legal Deposit Libraries (Non-Print Works) Regulations (UK) and UK copyright law currently in force.  |5 WlAbNL 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Java (Computer program language) 
650 0 |a Machine learning  |x Development. 
650 0 |a Application software  |x Development. 
650 6 |a Java (Langage de programmation) 
650 6 |a Apprentissage automatique  |x Développement. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Java (Computer program language)  |2 fast 
700 1 |a Kaluza, Bostjan. 
776 0 8 |i Print version:  |a Bhatia, AshishSingh.  |t Machine Learning in Java : Helpful Techniques to Design, Build, and Deploy Powerful Machine Learning Applications in Java, 2nd Edition.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788474399 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1947809  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0038553042 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5607606 
938 |a EBSCOhost  |b EBSC  |n 1947809 
938 |a YBP Library Services  |b YANK  |n 15875369 
994 |a 92  |b IZTAP