Cargando…

Practical Convolutional Neural Networks : Implement advanced deep learning models using Python /

This book helps you master CNN, from the basics to the most advanced concepts in CNN such as GANs, instance classification and attention mechanism for vision models and more. You will implement advanced CNN models using complex image and video datasets. By the end of the book you will learn CNN'...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karim, Md. Rezaul (Autor)
Otros Autores: Sewak, Mohit, Pujari, Pradeep
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1028218878
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 180310s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d IDB  |d MERUC  |d NLE  |d YDX  |d OCLCQ  |d N$T  |d OCLCF  |d VT2  |d OCLCQ  |d OCLCO  |d TEFOD  |d OCLCQ  |d LVT  |d C6I  |d UKAHL  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ 
019 |a 1028626049  |a 1028648867  |a 1030260934 
020 |a 9781788394147  |q (electronic book) 
020 |a 1788394143  |q (electronic book) 
020 |a 1788392302 
020 |a 9781788392303 
020 |z 1788392302 
020 |z 9781788392303 
024 3 |a 9781788392303 
029 1 |a AU@  |b 000066233310 
029 1 |a AU@  |b 000067022996 
029 1 |a CHNEW  |b 001002068 
029 1 |a CHVBK  |b 515198730 
029 1 |a AU@  |b 000065574242 
035 |a (OCoLC)1028218878  |z (OCoLC)1028626049  |z (OCoLC)1028648867  |z (OCoLC)1030260934 
037 |a 9781788394147  |b Packt Publishing 
037 |a 9C54F0EE-DB94-49F5-A109-B820A1BAE6B4  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.87  |b .S493 2018 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Karim, Md. Rezaul,  |e author. 
245 1 0 |a Practical Convolutional Neural Networks :  |b Implement advanced deep learning models using Python /  |c Rezaul Karim. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (211 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Deep Neural Networks â#x80;#x93; Overview; Building blocks of a neural network; Introduction to TensorFlow; Installing TensorFlow; For macOS X/Linux variants; TensorFlow basics; Basic math with TensorFlow; Softmax in TensorFlow; Introduction to the MNIST dataset ; The simplest artificial neural network; Building a single-layer neural network with TensorFlow; Keras deep learning library overview; Layers in the Keras model; Handwritten number recognition with Keras and MNIST. 
505 8 |a Retrieving training and test dataFlattened data; Visualizing the training data; Building the network; Training the network; Testing; Understanding backpropagation ; Summary; Chapter 2: Introduction to Convolutional Neural Networks; History of CNNs; Convolutional neural networks; How do computers interpret images?; Code for visualizing an image ; Dropout; Input layer; Convolutional layer; Convolutional layers in Keras; Pooling layer; Practical example â#x80;#x93; image classification; Image augmentation; Summary; Chapter 3: Build Your First CNN and Performance Optimization. 
505 8 |a CNN architectures and drawbacks of DNNsConvolutional operations; Pooling, stride, and padding operations; Fully connected layer; Convolution and pooling operations in TensorFlow; Applying pooling operations in TensorFlow; Convolution operations in TensorFlow; Training a CNN; Weight and bias initialization; Regularization; Activation functions; Using sigmoid; Using tanh; Using ReLU; Building, training, and evaluating our first CNN; Dataset description; Step 1 â#x80;#x93; Loading the required packages; Step 2 â#x80;#x93; Loading the training/test images to generate train/test set. 
505 8 |a Step 3- Defining CNN hyperparametersStep 4 â#x80;#x93; Constructing the CNN layers; Step 5 â#x80;#x93; Preparing the TensorFlow graph; Step 6 â#x80;#x93; Creating a CNN model; Step 7 â#x80;#x93; Running the TensorFlow graph to train the CNN model; Step 8 â#x80;#x93; Model evaluation; Model performance optimization; Number of hidden layers; Number of neurons per hidden layer; Batch normalization; Advanced regularization and avoiding overfitting; Applying dropout operations with TensorFlow; Which optimizer to use?; Memory tuning; Appropriate layer placement; Building the second CNN by putting everything together. 
505 8 |a Dataset description and preprocessingCreating the CNN model; Training and evaluating the network; Summary; Chapter 4: Popular CNN Model Architectures; Introduction to ImageNet; LeNet; AlexNet architecture; Traffic sign classifiers using AlexNet; VGGNet architecture; VGG16 image classification code example; GoogLeNet architecture; Architecture insights; Inception module; ResNet architecture; Summary; Chapter 5: Transfer Learning; Feature extraction approach; Target dataset is small and is similar to the original training dataset. 
500 |a Target dataset is small but different from the original training dataset. 
520 |a This book helps you master CNN, from the basics to the most advanced concepts in CNN such as GANs, instance classification and attention mechanism for vision models and more. You will implement advanced CNN models using complex image and video datasets. By the end of the book you will learn CNN's best practices to implement smart ConvNet ... 
588 0 |a Description based on online resource; title from PDF title page (viewed December 01, 2021). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 0 |a Computer vision. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Vision par ordinateur. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Information technology: general issues.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Information Technology.  |2 bisacsh 
650 7 |a Computers  |x Image Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Sewak, Mohit. 
700 1 |a Pujari, Pradeep. 
776 0 8 |i Print version:  |a Karim, Md. Rezaul.  |t Practical Convolutional Neural Networks : Implement advanced deep learning models using Python.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1728047  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036267823 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5314627 
938 |a EBSCOhost  |b EBSC  |n 1728047 
938 |a YBP Library Services  |b YANK  |n 15211175 
994 |a 92  |b IZTAP