Structural analysis using computational chemistry /
Computational chemistry is a science that allows researchers to study, characterize and predict the structure and stability of chemical systems. In other words: studying energy differences between different states to explain spectroscopic properties and reaction mechanisms at the atomic level. This...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Gistrup, Denmark :
River Publishers,
[2016]
|
Colección: | River Publishers series in polymer science.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Half Title
- RIVER PUBLISHERS SERIES IN POLYMER SCIENCE
- Title Page
- Structural Analysis using Computational Chemistry
- Copyright Page
- Contents
- Prologue
- Acknowledgments
- List of Contributors
- List of Figures
- List of Tables
- List of Abbreviations
- Chapter 1
- Quantum Mechanics and Structural Molecular Study (AM1)
- 1.1 Theoretical Basis of Quantum Mechanics
- 1.1.1 Semiempirical Methods
- 1.1.1.1 The semiempirical method AM1
- 1.1.1.1.1 Application of AM1 method in molecular structural study
- 1.1.1.1.2 Certain molecular properties
- 1.1.2 Computational Suite (HyperChem)
- 1.1.2.1 The molecules analyzed
- 1.1.2.2 Molecular modeling
- 1.2 Calculation of Molecular Properties
- 1.2.1 Molecular Energy
- 1.2.2 Obtaining the QSAR Properties
- 1.2.3 FTIR Analysis
- 1.2.4 Electrostatic Potential Map
- 1.2.5 Determination of Glibenclamide/Water Solubility
- 1.2.6 Degree of Cross-Linking in the Polymer Matrix
- 1.2.7 Covalent Cross-Linking
- 1.2.8 Polymer Matrix/Glibenclamide
- 1.3 Results
- 1.3.1 Structural Analysis of Glibenclamide (G)
- 1.3.1.1 QSAR properties and energy
- 1.3.1.2 FTIR
- 1.3.1.3 Electrostatic potential map
- 1.3.2 Structural Analysis of the Water Molecule and G/A
- 1.3.2.1 QSAR properties and energy
- 1.3.2.2 FTIR
- 1.3.2.3 Electrostatic potential map
- 1.3.3 Structural Analysis of Chitosan
- 1.3.3.1 QSAR properties and energy
- 1.3.3.2 FTIR
- 1.3.3.3 Electrostatic potential map
- 1.3.4 Structural Analysis of Genipin
- 1.3.4.1 QSAR properties and energy
- 1.3.4.2 FTIR
- 1.3.4.3 Electrostatic potential map
- 1.3.5 Cross-Linking: Chitosan/Genipin (C/Ge)
- 1.3.5.1 QSAR properties and energy
- 1.3.5.2 Electrostatic potential map
- 1.3.6 Adsorption of Glibenclamide in Chitosan/Genipin
- 1.3.6.1 QSAR properties and energy
- 1.3.6.2 FTIR.
- 1.3.6.3 Electrostatic potential map
- 1.4 Conclusions
- Acknowledgments
- References
- Chapter 2
- Application of Quantum Models in Molecular Analysis
- 2.1 Introduction
- 2.1.1 Election of the Quantum Model
- 2.1.1.1 Choice of model in basic molecular properties
- 2.1.1.2 Election model according to their origin
- 2.1.1.3 Choice of a semiempirical model
- 2.2 Application of Quantum Models in the Structural Analysis of a Polymer Matrix for Drug Release
- 2.2.1 Structural Analysis of Metformin
- 2.2.2 Structural Analysis of Glibenclamide
- 2.2.3 Structural Analysis of the Elements of the Polymer Matrix
- 2.2.3.1 Chitosan
- 2.2.3.2 Genipin
- 2.2.3.3 Water
- 2.2.3.4 IR (Infrared)
- 2.3 System Analysis: Polymer Matrix/Drug
- 2.3.1 Analysis of Physicochemical and Energy Properties
- 2.3.2 Electrostatic Potential Map
- 2.3.3 IR (Infrared)
- 2.4 Conclusions
- Acknowledgments
- References
- Chapter 3
- Molecular Analysis of Insulin Through Controlled Adsorption in Hydrogels Based on Chitosan
- 3.1 Introduction
- 3.1.1 Polymers
- 3.1.1.1 Chitosan
- 3.1.2 Hydrogels
- 3.1.2.1 Cross-linking agents
- 3.1.2.2 Genipin
- 3.1.3 Adsorption of Drugs
- 3.1.3.1 Dermal adsorption
- 3.1.4 Diabetes
- 3.1.4.1 Insulin
- 3.1.5 Computational Chemistry
- 3.2 Methodology
- 3.2.1 Determination of Structures Individually
- 3.2.2 Calculation of Energy
- 3.2.3 Obtaining the Partition Coefficient (Log P)
- 3.2.4 Obtaining the Electrostatic Potential Map
- 3.2.5 Analysis of the Infrared Spectrum (FTIR)
- 3.3 Results
- 3.3.1 Structural Analysis of Chitosan
- 3.3.1.1 Energy optimization and partition coefficient (Log P)
- 3.3.1.2 Electrostatic potential map
- 3.3.1.3 FTIR
- 3.3.2 Structural Analysis of Genipin
- 3.3.2.1 Energy optimization and partition coefficient (Log P)
- 3.3.2.2 Electrostatic potential map
- 3.3.2.3 FTIR.
- 3.3.3 Structural Analysis of Chitosan Cross-Linked with Genipin (C/G)
- 3.3.3.1 Energy optimization and partition coefficient (Log P)
- 3.3.3.2 Electrostatic potential map
- 3.3.3.3 FTIR
- 3.3.4 Structural Analysis of Insulin
- 3.3.4.1 Energy optimization and partition coefficient (Log P)
- 3.3.4.2 Electrostatic potential map
- 3.3.4.3 FTIR
- 3.3.5 Determination of the Structural Properties of the Binding of Insulin and Chitosan Cross-Linked with Genipin (C/G-insulin)
- 3.3.5.1 Energy optimization and partition coefficient (Log P)
- 3.3.5.2 Electrostatic potential map
- 3.3.5.3 FTIR
- 3.4 Conclusions
- Acknowledgments
- References
- Chapter 4
- Analysis and Molecular Characterization of Organic Materials for Applicationi n Solar Cells
- 4.1 Introduction
- 4.1.1 Computational Chemistry
- 4.1.1.1 Molecular mechanics (MM)
- 4.1.1.1.1 AMBER model
- 4.1.1.2 Quantum mechanics
- 4.1.1.3 Semiempirical methods
- 4.1.1.3.1 Parametric method 3
- 4.1.2 Composites
- 4.1.2.1 Polymer matrix
- 4.1.3 Polymers
- 4.1.3.1 High-density polyethylene
- 4.1.3.2 PCPDTBT
- 4.1.4 Graphite
- 4.1.4.1 Fullerene
- 4.1.5 HyperChem
- 4.1.5.1 Calculation properties
- 4.2 Methodology
- 4.2.1 Determination of Individual Structures
- 4.2.2 Calculation of Energy
- 4.2.3 Getting QSAR Properties
- 4.2.4 Obtaining Electrostatic Potential Map
- 4.2.5 Infrared Spectral Analysis (FTIR)
- 4.2.6 Obtaining Structural Parameters
- 4.3 Results
- 4.3.1 Structural Analysis of PCPDTBT−Fullerene−Polyethylene
- 4.3.1.1 Energy optimization
- 4.3.1.2 Electrostatic potential map
- 4.3.1.3 Bond length
- 4.3.1.4 Spectrum Fourier Transform Infrared (FTIR)
- 4.4 Conclusions
- Acknowledgments
- References
- Chapter 5
- Determination of Thermodynamic Properties of Ionic Liquids Through Molecular Simulation
- 5.1 Introduction
- 5.1.1 Overview of Simulation.
- 5.1.2 Implementation of the Simulation Method
- 5.1.3 Collective Simulation
- 5.1.4 Interatomic Potential
- 5.1.4.1 Forces of attraction-repulsion
- 5.1.4.2 Electrostatic forces
- 5.1.5 Initial Conditions and Boundary Conditions
- 5.1.6 Radio of Cutting and Condition of Minimum Image
- 5.1.7 Monte Carlo Simulation Technique
- 5.1.7.1 Technical Monte Carlo in isothermal-isobaric group (NPT)
- 5.1.7.2 Insertion of test particle technique and Henry constant
- 5.1.8 Molecular System Description
- 5.1.8.1 All atoms (AA)
- 5.1.8.2 United atoms (UA)
- 5.1.9 Standard Monte Carlo Moves Involving a Single Box
- 5.1.9.1 Translation move
- 5.1.9.2 Rotation move
- 5.1.9.3 Volume changes
- 5.1.9.4 Flip moves
- 5.1.9.5 Reputation move
- 5.1.9.6 Pivot move
- 5.2 Methodology
- 5.2.1 Construction of the Cation and Anion
- 5.2.2 Construction of the Simulation Box
- 5.2.3 System Simulation Parameters
- 5.2.4 Calculation of Thermodynamic Properties
- 5.2.4.1 Thermal expansion coefficient (?P)
- 5.2.4.2 Isothermal compressibility coefficient (kT)
- 5.2.4.3 Isochoric and isobaric heat capacity (Cv and Cp)
- 5.2.4.4 Joule−Thomson coefficient (?JT)
- 5.2.4.5 Speed of sound (u)
- 5.2.4.6 Chemical potential of the solute (?ex2 )
- 5.2.4.7 Henry constant (h)
- 5.2.5 Calculation of Structural Properties
- 5.3 Results and Discussions
- 5.3.1 Molecule Construction
- 5.3.2 Simulation Box
- 5.3.3 Data Entry System
- 5.3.4 Equilibration Phase of System
- 5.3.5 Production Phase of System
- 5.3.6 Radial Distribution Functions of Ionic Liquid
- 5.4 Conclusions
- Acknowledgments
- References
- Index
- About the Editor
- Back Cover.