Cargando…

Structural analysis using computational chemistry /

Computational chemistry is a science that allows researchers to study, characterize and predict the structure and stability of chemical systems. In other words: studying energy differences between different states to explain spectroscopic properties and reaction mechanisms at the atomic level. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rangel-Vazquez, Norma-Aurea (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers, [2016]
Colección:River Publishers series in polymer science.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Half Title
  • RIVER PUBLISHERS SERIES IN POLYMER SCIENCE
  • Title Page
  • Structural Analysis using Computational Chemistry
  • Copyright Page
  • Contents
  • Prologue
  • Acknowledgments
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • Chapter 1
  • Quantum Mechanics and Structural Molecular Study (AM1)
  • 1.1 Theoretical Basis of Quantum Mechanics
  • 1.1.1 Semiempirical Methods
  • 1.1.1.1 The semiempirical method AM1
  • 1.1.1.1.1 Application of AM1 method in molecular structural study
  • 1.1.1.1.2 Certain molecular properties
  • 1.1.2 Computational Suite (HyperChem)
  • 1.1.2.1 The molecules analyzed
  • 1.1.2.2 Molecular modeling
  • 1.2 Calculation of Molecular Properties
  • 1.2.1 Molecular Energy
  • 1.2.2 Obtaining the QSAR Properties
  • 1.2.3 FTIR Analysis
  • 1.2.4 Electrostatic Potential Map
  • 1.2.5 Determination of Glibenclamide/Water Solubility
  • 1.2.6 Degree of Cross-Linking in the Polymer Matrix
  • 1.2.7 Covalent Cross-Linking
  • 1.2.8 Polymer Matrix/Glibenclamide
  • 1.3 Results
  • 1.3.1 Structural Analysis of Glibenclamide (G)
  • 1.3.1.1 QSAR properties and energy
  • 1.3.1.2 FTIR
  • 1.3.1.3 Electrostatic potential map
  • 1.3.2 Structural Analysis of the Water Molecule and G/A
  • 1.3.2.1 QSAR properties and energy
  • 1.3.2.2 FTIR
  • 1.3.2.3 Electrostatic potential map
  • 1.3.3 Structural Analysis of Chitosan
  • 1.3.3.1 QSAR properties and energy
  • 1.3.3.2 FTIR
  • 1.3.3.3 Electrostatic potential map
  • 1.3.4 Structural Analysis of Genipin
  • 1.3.4.1 QSAR properties and energy
  • 1.3.4.2 FTIR
  • 1.3.4.3 Electrostatic potential map
  • 1.3.5 Cross-Linking: Chitosan/Genipin (C/Ge)
  • 1.3.5.1 QSAR properties and energy
  • 1.3.5.2 Electrostatic potential map
  • 1.3.6 Adsorption of Glibenclamide in Chitosan/Genipin
  • 1.3.6.1 QSAR properties and energy
  • 1.3.6.2 FTIR.
  • 1.3.6.3 Electrostatic potential map
  • 1.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 2
  • Application of Quantum Models in Molecular Analysis
  • 2.1 Introduction
  • 2.1.1 Election of the Quantum Model
  • 2.1.1.1 Choice of model in basic molecular properties
  • 2.1.1.2 Election model according to their origin
  • 2.1.1.3 Choice of a semiempirical model
  • 2.2 Application of Quantum Models in the Structural Analysis of a Polymer Matrix for Drug Release
  • 2.2.1 Structural Analysis of Metformin
  • 2.2.2 Structural Analysis of Glibenclamide
  • 2.2.3 Structural Analysis of the Elements of the Polymer Matrix
  • 2.2.3.1 Chitosan
  • 2.2.3.2 Genipin
  • 2.2.3.3 Water
  • 2.2.3.4 IR (Infrared)
  • 2.3 System Analysis: Polymer Matrix/Drug
  • 2.3.1 Analysis of Physicochemical and Energy Properties
  • 2.3.2 Electrostatic Potential Map
  • 2.3.3 IR (Infrared)
  • 2.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 3
  • Molecular Analysis of Insulin Through Controlled Adsorption in Hydrogels Based on Chitosan
  • 3.1 Introduction
  • 3.1.1 Polymers
  • 3.1.1.1 Chitosan
  • 3.1.2 Hydrogels
  • 3.1.2.1 Cross-linking agents
  • 3.1.2.2 Genipin
  • 3.1.3 Adsorption of Drugs
  • 3.1.3.1 Dermal adsorption
  • 3.1.4 Diabetes
  • 3.1.4.1 Insulin
  • 3.1.5 Computational Chemistry
  • 3.2 Methodology
  • 3.2.1 Determination of Structures Individually
  • 3.2.2 Calculation of Energy
  • 3.2.3 Obtaining the Partition Coefficient (Log P)
  • 3.2.4 Obtaining the Electrostatic Potential Map
  • 3.2.5 Analysis of the Infrared Spectrum (FTIR)
  • 3.3 Results
  • 3.3.1 Structural Analysis of Chitosan
  • 3.3.1.1 Energy optimization and partition coefficient (Log P)
  • 3.3.1.2 Electrostatic potential map
  • 3.3.1.3 FTIR
  • 3.3.2 Structural Analysis of Genipin
  • 3.3.2.1 Energy optimization and partition coefficient (Log P)
  • 3.3.2.2 Electrostatic potential map
  • 3.3.2.3 FTIR.
  • 3.3.3 Structural Analysis of Chitosan Cross-Linked with Genipin (C/G)
  • 3.3.3.1 Energy optimization and partition coefficient (Log P)
  • 3.3.3.2 Electrostatic potential map
  • 3.3.3.3 FTIR
  • 3.3.4 Structural Analysis of Insulin
  • 3.3.4.1 Energy optimization and partition coefficient (Log P)
  • 3.3.4.2 Electrostatic potential map
  • 3.3.4.3 FTIR
  • 3.3.5 Determination of the Structural Properties of the Binding of Insulin and Chitosan Cross-Linked with Genipin (C/G-insulin)
  • 3.3.5.1 Energy optimization and partition coefficient (Log P)
  • 3.3.5.2 Electrostatic potential map
  • 3.3.5.3 FTIR
  • 3.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 4
  • Analysis and Molecular Characterization of Organic Materials for Applicationi n Solar Cells
  • 4.1 Introduction
  • 4.1.1 Computational Chemistry
  • 4.1.1.1 Molecular mechanics (MM)
  • 4.1.1.1.1 AMBER model
  • 4.1.1.2 Quantum mechanics
  • 4.1.1.3 Semiempirical methods
  • 4.1.1.3.1 Parametric method 3
  • 4.1.2 Composites
  • 4.1.2.1 Polymer matrix
  • 4.1.3 Polymers
  • 4.1.3.1 High-density polyethylene
  • 4.1.3.2 PCPDTBT
  • 4.1.4 Graphite
  • 4.1.4.1 Fullerene
  • 4.1.5 HyperChem
  • 4.1.5.1 Calculation properties
  • 4.2 Methodology
  • 4.2.1 Determination of Individual Structures
  • 4.2.2 Calculation of Energy
  • 4.2.3 Getting QSAR Properties
  • 4.2.4 Obtaining Electrostatic Potential Map
  • 4.2.5 Infrared Spectral Analysis (FTIR)
  • 4.2.6 Obtaining Structural Parameters
  • 4.3 Results
  • 4.3.1 Structural Analysis of PCPDTBT−Fullerene−Polyethylene
  • 4.3.1.1 Energy optimization
  • 4.3.1.2 Electrostatic potential map
  • 4.3.1.3 Bond length
  • 4.3.1.4 Spectrum Fourier Transform Infrared (FTIR)
  • 4.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 5
  • Determination of Thermodynamic Properties of Ionic Liquids Through Molecular Simulation
  • 5.1 Introduction
  • 5.1.1 Overview of Simulation.
  • 5.1.2 Implementation of the Simulation Method
  • 5.1.3 Collective Simulation
  • 5.1.4 Interatomic Potential
  • 5.1.4.1 Forces of attraction-repulsion
  • 5.1.4.2 Electrostatic forces
  • 5.1.5 Initial Conditions and Boundary Conditions
  • 5.1.6 Radio of Cutting and Condition of Minimum Image
  • 5.1.7 Monte Carlo Simulation Technique
  • 5.1.7.1 Technical Monte Carlo in isothermal-isobaric group (NPT)
  • 5.1.7.2 Insertion of test particle technique and Henry constant
  • 5.1.8 Molecular System Description
  • 5.1.8.1 All atoms (AA)
  • 5.1.8.2 United atoms (UA)
  • 5.1.9 Standard Monte Carlo Moves Involving a Single Box
  • 5.1.9.1 Translation move
  • 5.1.9.2 Rotation move
  • 5.1.9.3 Volume changes
  • 5.1.9.4 Flip moves
  • 5.1.9.5 Reputation move
  • 5.1.9.6 Pivot move
  • 5.2 Methodology
  • 5.2.1 Construction of the Cation and Anion
  • 5.2.2 Construction of the Simulation Box
  • 5.2.3 System Simulation Parameters
  • 5.2.4 Calculation of Thermodynamic Properties
  • 5.2.4.1 Thermal expansion coefficient (?P)
  • 5.2.4.2 Isothermal compressibility coefficient (kT)
  • 5.2.4.3 Isochoric and isobaric heat capacity (Cv and Cp)
  • 5.2.4.4 Joule−Thomson coefficient (?JT)
  • 5.2.4.5 Speed of sound (u)
  • 5.2.4.6 Chemical potential of the solute (?ex2 )
  • 5.2.4.7 Henry constant (h)
  • 5.2.5 Calculation of Structural Properties
  • 5.3 Results and Discussions
  • 5.3.1 Molecule Construction
  • 5.3.2 Simulation Box
  • 5.3.3 Data Entry System
  • 5.3.4 Equilibration Phase of System
  • 5.3.5 Production Phase of System
  • 5.3.6 Radial Distribution Functions of Ionic Liquid
  • 5.4 Conclusions
  • Acknowledgments
  • References
  • Index
  • About the Editor
  • Back Cover.