|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn982123767 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
170411s2017 enk o 001 0 eng d |
040 |
|
|
|a LGG
|b eng
|e rda
|e pn
|c LGG
|d N$T
|d EBLCP
|d N$T
|d IDEBK
|d UIU
|d OCLCF
|d YDX
|d NOC
|d UAB
|d OTZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 982600896
|a 982813339
|a 983026640
|a 983362038
|a 983476847
|a 983689956
|
020 |
|
|
|a 9781316754757
|q (electronic bk.)
|
020 |
|
|
|a 1316754758
|q (electronic bk.)
|
020 |
|
|
|a 1316752828
|
020 |
|
|
|a 9781316752821
|
020 |
|
|
|z 9781316716977
|
020 |
|
|
|z 131671697X
|
020 |
|
|
|z 9781107168060
|
020 |
|
|
|z 1107168066
|
035 |
|
|
|a (OCoLC)982123767
|z (OCoLC)982600896
|z (OCoLC)982813339
|z (OCoLC)983026640
|z (OCoLC)983362038
|z (OCoLC)983476847
|z (OCoLC)983689956
|
037 |
|
|
|a 1005922
|b MIL
|
050 |
|
4 |
|a QA248
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3/22
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Miller, Arnold W.,
|d 1950-
|e author.
|
245 |
1 |
0 |
|a Descriptive set theory and forcing :
|b how to prove theorems about borel sets the hard way /
|c Arnold W. Miller.
|
264 |
|
1 |
|a Cambridge :
|b Cambridge University Press,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Lecture notes in logic ;
|v 4
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets.
|
505 |
0 |
|
|a I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal
|
505 |
8 |
|
|a II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets
|
505 |
8 |
|
|a III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes
|
505 |
8 |
|
|a IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Set theory.
|
650 |
|
0 |
|a Forcing (Model theory)
|
650 |
|
0 |
|a Borel sets.
|
650 |
|
6 |
|a Théorie des ensembles.
|
650 |
|
6 |
|a Forcing (Théorie des modèles)
|
650 |
|
6 |
|a Ensembles boréliens.
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Borel sets
|2 fast
|
650 |
|
7 |
|a Forcing (Model theory)
|2 fast
|
650 |
|
7 |
|a Set theory
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a MILLER, ARNOLD W.
|t DESCRIPTIVE SET THEORY AND FORCING.
|d [Place of publication not identified] : CAMBRIDGE UNIV Press, 2016
|z 1107168066
|w (OCoLC)959592886
|
830 |
|
0 |
|a Lecture notes in logic ;
|v 4.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4812300
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1475797
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis38009338
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14007742
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13972496
|
994 |
|
|
|a 92
|b IZTAP
|