Cargando…

Descriptive set theory and forcing : how to prove theorems about borel sets the hard way /

These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miller, Arnold W., 1950- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2017.
Colección:Lecture notes in logic ; 4.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn982123767
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 170411s2017 enk o 001 0 eng d
040 |a LGG  |b eng  |e rda  |e pn  |c LGG  |d N$T  |d EBLCP  |d N$T  |d IDEBK  |d UIU  |d OCLCF  |d YDX  |d NOC  |d UAB  |d OTZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 982600896  |a 982813339  |a 983026640  |a 983362038  |a 983476847  |a 983689956 
020 |a 9781316754757  |q (electronic bk.) 
020 |a 1316754758  |q (electronic bk.) 
020 |a 1316752828 
020 |a 9781316752821 
020 |z 9781316716977 
020 |z 131671697X 
020 |z 9781107168060 
020 |z 1107168066 
035 |a (OCoLC)982123767  |z (OCoLC)982600896  |z (OCoLC)982813339  |z (OCoLC)983026640  |z (OCoLC)983362038  |z (OCoLC)983476847  |z (OCoLC)983689956 
037 |a 1005922  |b MIL 
050 4 |a QA248 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 23 
049 |a UAMI 
100 1 |a Miller, Arnold W.,  |d 1950-  |e author. 
245 1 0 |a Descriptive set theory and forcing :  |b how to prove theorems about borel sets the hard way /  |c Arnold W. Miller. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in logic ;  |v 4 
588 0 |a Print version record. 
520 |a These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. 
505 0 |a I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal 
505 8 |a II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets 
505 8 |a III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes 
505 8 |a IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Set theory. 
650 0 |a Forcing (Model theory) 
650 0 |a Borel sets. 
650 6 |a Théorie des ensembles. 
650 6 |a Forcing (Théorie des modèles) 
650 6 |a Ensembles boréliens. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Borel sets  |2 fast 
650 7 |a Forcing (Model theory)  |2 fast 
650 7 |a Set theory  |2 fast 
776 0 8 |i Print version:  |a MILLER, ARNOLD W.  |t DESCRIPTIVE SET THEORY AND FORCING.  |d [Place of publication not identified] : CAMBRIDGE UNIV Press, 2016  |z 1107168066  |w (OCoLC)959592886 
830 0 |a Lecture notes in logic ;  |v 4. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4812300 
938 |a EBSCOhost  |b EBSC  |n 1475797 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38009338 
938 |a YBP Library Services  |b YANK  |n 14007742 
938 |a YBP Library Services  |b YANK  |n 13972496 
994 |a 92  |b IZTAP