|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn958963214 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
160921s2016 nyu ob 001 0 eng |
010 |
|
|
|a 2016043525
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d N$T
|d OCLCF
|d EBLCP
|d YDX
|d SNK
|d DKU
|d AUW
|d INTCL
|d IGB
|d D6H
|d VTS
|d AGLDB
|d G3B
|d S8J
|d S9I
|d STF
|d DLC
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 962789408
|a 964546063
|
020 |
|
|
|a 9781634857109
|q (e-book)
|
020 |
|
|
|a 1634857100
|
020 |
|
|
|z 9781634856928
|q (hardcover)
|
020 |
|
|
|z 1634856929 (hardcover)
|
035 |
|
|
|a (OCoLC)958963214
|z (OCoLC)962789408
|z (OCoLC)964546063
|
042 |
|
|
|a pcc
|
050 |
1 |
0 |
|a TA357.5.M84
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
0 |
|a 621.402/2
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Multiscale thermal transport in energy systems /
|c Yuwen Zhang and Ya-Ling He, editors.
|
264 |
|
1 |
|a New York :
|b Nova Publishers,
|c [2016]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Energy science, engineering and technology
|
500 |
|
|
|a "Nova Science Publishers, Inc."--Title page verso.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Preface; Chapter 1; Boiling and Evaporation on Micro/Nano-Engineered Surfaces; Abstract; 1. Introduction; 1.1. Boiling Heat Transfer; Surface Structure; Interfacial Wettability; Present Work on Boiling Heat Transfer; 1.2. Evaporation Heat Transfer; Literature Review of Capillary Evaporation; Present Work on Evaporation Heat Transfer; 2. Carbon Nanotube Enabled Hydrophobic-Hydrophilic Composite Interfaces to Enhance Nucleate Boiling; 2.1. Introduction of Nucleate Boiling; 2.2. Synthesis of Hydrophobic-Hydrophilic Composite Interfaces; 2.3. Contact Angle Measurement
|
505 |
8 |
|
|a 2.4. Characterization of the Bonding Forces2.5. Pool Boiling Testing and Data Reduction; 2.6. Boiling Experiment on the Hydrophobic-Hydrophilic Surfaces; 2.7. Enhancement Mechanism; 3. Micromembrane-Enhanced Capillary Evaporation; 3.1. Introduction of Capillary Evaporation; 3.2. Design of Micromembrane-Enhanced Evaporating Surfaces; 3.3. Experimental Apparatus and Data Reduction; Experimental Apparatus; Data Reduction; 3.4. Results and Discussion; Capillary Evaporation Curves; Capillary Evaporation on Micromembrane-Enhanced Evaporating Surfaces
|
505 |
8 |
|
|a 3.5. Summary of the Micromembrane-Enhanced Evaporating Surfaces4. Enhanced Capillary Evaporation on Micromembrane-Enhanced Hybrid Wicks with Atomic Layer Deposited Silica; 4.1. Introduction of Enhanced Capillary Evaporation; 4.2. Design and ALD Deposition; Design of Micromembrane-Enhanced Hybrid Wicks; ALD Deposition of Silica; 4.3. Characterization of the ALD SIO2 Coated Interface; 4.4. Two Dimensional Model of Temperature Distribution; 4.5. Enhanced Capillary Evaporation; 4.6. Evaporation Enhancement Mechanism; 4.7. Summary of the Micromembrane-Enhanced Hybrid Wicks
|
505 |
8 |
|
|a 5. Transport Phenomena on Nanoengineered Hydrophobic-Hydrophilic Interfaces5.1. Introduction; 5.2. Synthesis and Deposition; 5.3. Hierarchical Hydrophobic-Hydrophilic Surfaces; 5.4. Capillary Evaporation Performances; 5.5. CHF Enhancement Mechanism; 5.6. Summary of the Nanoengineered Hybrid Wicks; Conclusion; References; Chapter 2; Multiscale Modeling of Nanostructure-Enhanced Thin Film Evaporation; Abstract; Nomenclature; 1. Introduction; 2. Modeling; 2.1. Disjoining Pressure; 2.2 Heat Transfer Coefficient; 2.3. Thin Film Instability; 3. Molecular Modeling
|
505 |
8 |
|
|a 3.1. MD Simulation for Disjoining Pressure3.2. NEMD Simulation for Thin Film Evaporation; 3.3. Thin Film Instability; 3.4. Interaction Energy per Unit Area; 3.5. Vibrational Density of States; 4. Effect of Nanostructures on Disjoining Pressure; 4.1. Meniscus Shape; 4.2. Disjoining Pressure; 5. Effect of Nanostructures on Kapitza Resistance; 5.1. Kapitza Resistance With and Without Phase Change; 5.2. Effect of Interaction Energy per Unit Area; 5.3. Effect of VDOS Mismatch; 6. Effect of Nanostructures on Heat Transfer Coefficient; 7. Effect of Nanostructures on Film Stability; Conclusion
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Multiphase flow.
|
650 |
|
0 |
|a Heat
|x Transmission.
|
650 |
|
0 |
|a Transport theory.
|
650 |
|
6 |
|a Écoulement polyphasique.
|
650 |
|
6 |
|a Chaleur
|x Transmission.
|
650 |
|
6 |
|a Théorie du transport.
|
650 |
|
7 |
|a heat transmission.
|2 aat
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING / Mechanical
|2 bisacsh
|
650 |
|
7 |
|a Heat
|x Transmission.
|2 fast
|0 (OCoLC)fst00953826
|
650 |
|
7 |
|a Multiphase flow.
|2 fast
|0 (OCoLC)fst01028951
|
650 |
|
7 |
|a Transport theory.
|2 fast
|0 (OCoLC)fst01154987
|
700 |
1 |
|
|a Zhang, Yuwen,
|d 1965-
|e editor.
|
700 |
1 |
|
|a He, Ya-Ling,
|d 1963-
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Multiscale thermal transport in energy systems
|d Hauppauge, New York : Nova Science Publishers, Inc., [2016]
|z 9781634856928
|w (DLC) 2016028474
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1385322
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13052502
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1385322
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4730647
|
994 |
|
|
|a 92
|b IZTAP
|