Cargando…

Multiscale thermal transport in energy systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhang, Yuwen, 1965- (Editor ), He, Ya-Ling, 1963- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Publishers, [2016]
Colección:Energy science, engineering and technology
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn958963214
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 160921s2016 nyu ob 001 0 eng
010 |a  2016043525 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d OCLCF  |d EBLCP  |d YDX  |d SNK  |d DKU  |d AUW  |d INTCL  |d IGB  |d D6H  |d VTS  |d AGLDB  |d G3B  |d S8J  |d S9I  |d STF  |d DLC  |d OCLCO  |d OCLCQ 
019 |a 962789408  |a 964546063 
020 |a 9781634857109  |q (e-book) 
020 |a 1634857100 
020 |z 9781634856928  |q (hardcover) 
020 |z 1634856929 (hardcover) 
035 |a (OCoLC)958963214  |z (OCoLC)962789408  |z (OCoLC)964546063 
042 |a pcc 
050 1 0 |a TA357.5.M84 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.402/2  |2 23 
049 |a UAMI 
245 0 0 |a Multiscale thermal transport in energy systems /  |c Yuwen Zhang and Ya-Ling He, editors. 
264 1 |a New York :  |b Nova Publishers,  |c [2016] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Energy science, engineering and technology 
500 |a "Nova Science Publishers, Inc."--Title page verso. 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Preface; Chapter 1; Boiling and Evaporation on Micro/Nano-Engineered Surfaces; Abstract; 1. Introduction; 1.1. Boiling Heat Transfer; Surface Structure; Interfacial Wettability; Present Work on Boiling Heat Transfer; 1.2. Evaporation Heat Transfer; Literature Review of Capillary Evaporation; Present Work on Evaporation Heat Transfer; 2. Carbon Nanotube Enabled Hydrophobic-Hydrophilic Composite Interfaces to Enhance Nucleate Boiling; 2.1. Introduction of Nucleate Boiling; 2.2. Synthesis of Hydrophobic-Hydrophilic Composite Interfaces; 2.3. Contact Angle Measurement 
505 8 |a 2.4. Characterization of the Bonding Forces2.5. Pool Boiling Testing and Data Reduction; 2.6. Boiling Experiment on the Hydrophobic-Hydrophilic Surfaces; 2.7. Enhancement Mechanism; 3. Micromembrane-Enhanced Capillary Evaporation; 3.1. Introduction of Capillary Evaporation; 3.2. Design of Micromembrane-Enhanced Evaporating Surfaces; 3.3. Experimental Apparatus and Data Reduction; Experimental Apparatus; Data Reduction; 3.4. Results and Discussion; Capillary Evaporation Curves; Capillary Evaporation on Micromembrane-Enhanced Evaporating Surfaces 
505 8 |a 3.5. Summary of the Micromembrane-Enhanced Evaporating Surfaces4. Enhanced Capillary Evaporation on Micromembrane-Enhanced Hybrid Wicks with Atomic Layer Deposited Silica; 4.1. Introduction of Enhanced Capillary Evaporation; 4.2. Design and ALD Deposition; Design of Micromembrane-Enhanced Hybrid Wicks; ALD Deposition of Silica; 4.3. Characterization of the ALD SIO2 Coated Interface; 4.4. Two Dimensional Model of Temperature Distribution; 4.5. Enhanced Capillary Evaporation; 4.6. Evaporation Enhancement Mechanism; 4.7. Summary of the Micromembrane-Enhanced Hybrid Wicks 
505 8 |a 5. Transport Phenomena on Nanoengineered Hydrophobic-Hydrophilic Interfaces5.1. Introduction; 5.2. Synthesis and Deposition; 5.3. Hierarchical Hydrophobic-Hydrophilic Surfaces; 5.4. Capillary Evaporation Performances; 5.5. CHF Enhancement Mechanism; 5.6. Summary of the Nanoengineered Hybrid Wicks; Conclusion; References; Chapter 2; Multiscale Modeling of Nanostructure-Enhanced Thin Film Evaporation; Abstract; Nomenclature; 1. Introduction; 2. Modeling; 2.1. Disjoining Pressure; 2.2 Heat Transfer Coefficient; 2.3. Thin Film Instability; 3. Molecular Modeling 
505 8 |a 3.1. MD Simulation for Disjoining Pressure3.2. NEMD Simulation for Thin Film Evaporation; 3.3. Thin Film Instability; 3.4. Interaction Energy per Unit Area; 3.5. Vibrational Density of States; 4. Effect of Nanostructures on Disjoining Pressure; 4.1. Meniscus Shape; 4.2. Disjoining Pressure; 5. Effect of Nanostructures on Kapitza Resistance; 5.1. Kapitza Resistance With and Without Phase Change; 5.2. Effect of Interaction Energy per Unit Area; 5.3. Effect of VDOS Mismatch; 6. Effect of Nanostructures on Heat Transfer Coefficient; 7. Effect of Nanostructures on Film Stability; Conclusion 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Multiphase flow. 
650 0 |a Heat  |x Transmission. 
650 0 |a Transport theory. 
650 6 |a Écoulement polyphasique. 
650 6 |a Chaleur  |x Transmission. 
650 6 |a Théorie du transport. 
650 7 |a heat transmission.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING / Mechanical  |2 bisacsh 
650 7 |a Heat  |x Transmission.  |2 fast  |0 (OCoLC)fst00953826 
650 7 |a Multiphase flow.  |2 fast  |0 (OCoLC)fst01028951 
650 7 |a Transport theory.  |2 fast  |0 (OCoLC)fst01154987 
700 1 |a Zhang, Yuwen,  |d 1965-  |e editor. 
700 1 |a He, Ya-Ling,  |d 1963-  |e editor. 
776 0 8 |i Print version:  |t Multiscale thermal transport in energy systems  |d Hauppauge, New York : Nova Science Publishers, Inc., [2016]  |z 9781634856928  |w (DLC) 2016028474 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1385322  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 13052502 
938 |a EBSCOhost  |b EBSC  |n 1385322 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4730647 
994 |a 92  |b IZTAP