Chargement en cours…

Recent progress in the theory of the Euler and Navier-Stokes equations /

The rigorous mathematical theory of the Navier-Stokes and Euler equations has been a focus of intense activity in recent years. This volume, the product of a workshop in Venice in 2013, consolidates, surveys and further advances the study of these canonical equations. It consists of a number of revi...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Autres auteurs: Robinson, James C. (James Cooper), 1969- (Éditeur intellectuel), Rodrigo, Jose L. (Éditeur intellectuel), Sadowski, Witold (Mathematician) (Éditeur intellectuel), Vidal-López, Alejandro, 1976- (Éditeur intellectuel)
Format: Électronique eBook
Langue:Inglés
Publié: Cambridge : Cambridge University Press, 2016.
Collection:London Mathematical Society lecture note series ; no. 430.
Sujets:
Accès en ligne:Texto completo
Table des matières:
  • Classical solutions to the two-dimensional Euler equations and elliptic boundary value problems, an overview / H. Beirão da Veiga
  • Analyticity radii and the Navier-Stokes equations: recent results and applications / Z. Bradshaw, Z. Grujic, & I. Kukavica
  • On the motion of a pendulum with a cavity entirely filled with a viscous liquid / G.P. Galdi & G. Mazzone
  • Modal dependency and nonlinear depletion in the three-dimensional Navier-Stokes equations / J.D. Gibbon
  • Boussinesq equations with zero viscosity or zero diffusivity: a review / W. Hu, I. Kukavica, F. Wang, & M. Ziane
  • Global regularity versus finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations / A. Larios & E.S. Titi
  • Parabolic Morrey spaces and mild solutions of the Navier-Stokes equations: an interesting answer through a silly method to a stupid question / P.G. Lemarié-Rieusset
  • Well-posedness for the diffusive 3D Burgers equations with initial data in H1/2 / B.C. Pooley & J.C. Robinson
  • On the Fursikov approach to the moment problem for the three-dimensional Navier-Stokes equations / J.C. Robinson & A. Vidal-López
  • Some probabilistic topics in the Navier-Stokes equations / M. Romito.