|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn922922411 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
151005t20162016nju ob 001 0 eng d |
040 |
|
|
|a YDXCP
|b eng
|e rda
|e pn
|c YDXCP
|d N$T
|d IDEBK
|d OCLCF
|d CDX
|d CUS
|d OSU
|d DEBSZ
|d OTZ
|d D6H
|d AGLDB
|d OCLCQ
|d VGM
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9789814704045
|q (electronic bk.)
|
020 |
|
|
|a 9814704040
|q (electronic bk.)
|
020 |
|
|
|z 9789814704038
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9814704032
|q (hardcover ;
|q alk. paper)
|
029 |
1 |
|
|a AU@
|b 000056297668
|
029 |
1 |
|
|a DEBBG
|b BV043784893
|
029 |
1 |
|
|a DEBSZ
|b 472870661
|
029 |
1 |
|
|a ZWZ
|b 237074907
|
035 |
|
|
|a (OCoLC)922922411
|
050 |
|
4 |
|a QA404.5
|b .D66 2015eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.55
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Doman, Brian George Spencer,
|d 1936-
|e author.
|
245 |
1 |
4 |
|a The classical orthogonal polynomials /
|c Brian George Spencer Doman, University of Liverpool, UK.
|
264 |
|
1 |
|a New Jersey :
|b World Scientific,
|c [2016]
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (xii, 164 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Definitions and general properties -- Hermite polynomials -- Associated laguerre polynomials -- Legendre polynomials -- Chebyshev polynomials of the first kind -- Chebyshev polynomials of the second kind -- Chebyshev polynomials of the third kind -- Chebyshev polynomials of the fourth kind -- Gegenbauer polynomials -- Associated legendre functions -- Jacobi polynomials.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a "This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation. Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation."--
|c Provided by publisher
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Orthogonal polynomials.
|
650 |
|
0 |
|a Polynomials.
|
650 |
|
6 |
|a Polynômes orthogonaux.
|
650 |
|
6 |
|a Polynômes.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Orthogonal polynomials
|2 fast
|
650 |
|
7 |
|a Polynomials
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Doman, Brian George Spencer, 1936-
|t Classical orthogonal polynomials.
|d New Jersey : World Scientific, 2015
|z 9789814704038
|w (DLC) 2015027954
|w (OCoLC)922158208
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1077634
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH29503330
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 32820330
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1077634
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis32820330
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12627832
|
994 |
|
|
|a 92
|b IZTAP
|