Cargando…

An introduction to nonlinear finite element analysis : with applications to heat transfer, fluid mechanics, and solid mechanics /

The development of realistic mathematical models that govern the response of systems or processes is strongly connected to the ability to translate them into meaningful discrete models that allow for a systematic evaluation of various parameters of the systems and processes. The second edition of th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Reddy, J. N. (Junuthula Narasimha), 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, [2014]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine-generated contents note: 1. General Introduction and Mathematical Preliminaries
  • 1.1. General Comments
  • 1.2. Mathematical Models
  • 1.3. Numerical Simulations
  • 1.4. The Finite Element Method
  • 1.5. Non-linear Analysis
  • 1.5.1. Introduction
  • 1.5.2. Classification of Non-linearities
  • 1.6. Review of Vectors and Tensors
  • 1.6.1. Preliminary Comments
  • 1.6.2. Definition of a Physical Vector
  • 1.6.2.1. Vector addition
  • 1.6.2.2. Multiplication of a vector by a scalar
  • 1.6.3. Scalar and Vector Products
  • 1.6.3.1. Scalar product (or "dot" product)
  • 1.6.3.2. Vector product
  • 1.6.3.3. Plane area as a vector
  • 1.6.3.4. Linear independence of vectors
  • 1.6.3.5. Components of a vector
  • 1.6.4. Summation Convention and Kronecker Delta and Permutation Symbol
  • 1.6.4.1. Summation convention
  • 1.6.4.2. Kronecker delta symbol
  • 1.6.4.3. The permutation symbol
  • 1.6.5. Tensors and their Matri.
  • Note continued: 6.7.4.2. Fully-discretized equations
  • 6.7.5. Stability and Accuracy
  • 6.7.5.1. Preliminary comments
  • 6.7.5.2. Stability criteria
  • 6.7.6. Computer Implementation
  • 6.7.7. Numerical Examples
  • 6.8. Summary
  • Problems
  • 7. Non-linear Bending of Elastic Plates
  • 7.1. Introduction
  • 7.2. The Classical Plate Theory
  • 7.2.1. Assumptions of the Kinematics
  • 7.2.2. Displacement and Strain Fields
  • 7.3. Weak Formulation of the CPT
  • 7.3.1. Virtual Work Statement
  • 7.3.2. Weak Forms
  • 7.3.3. Equilibrium Equations
  • 7.3.4. Boundary Conditions
  • 7.3.4.1. The Kirchhoff free-edge condition
  • 7.3.4.2. Typical edge conditions
  • 7.3.5. Stress Resultant-Deflection Relations
  • 7.4. Finite Element Models of the CPT
  • 7.4.1. General Formulation
  • 7.4.2. Tangent Stiffness Coefficients
  • 7.4.3. Non-Conforming and Conforming Plate Elements
  • 7.5. Computer Implementation of the CPT Elements
  • 7.5.1. General Remarks
  • 7.5.2. Programming Aspects
  • 7.5.3. Post-Computation of Stresses
  • 7.6. Numerical Examples using the CPT Elements
  • 7.6.1. Preliminary Comments
  • 7.6.2. Results of Linear Analysis
  • 7.6.3. Results of Non-linear Analysis
  • 7.7. The First-Order Shear Deformation Plate Theory
  • 7.7.1. Introduction
  • 7.7.2. Displacement Field
  • 7.7.3. Weak Forms using the Principle of Virtual Displacements
  • 7.7.4. Governing Equations
  • 7.8. Finite Element Models of the FSDT
  • 7.8.1. Weak Forms
  • 7.8.2. The Finite Element Model
  • 7.8.3. Tangent Stiffness Coefficients
  • 7.8.4. Shear and Membrane Locking
  • 7.9. Computer Implementation and Numerical Results of the FSDT Elements
  • 7.9.1. Computer Implementation
  • 7.9.2. Results of Linear Analysis
  • 7.9.3. Results of Non-linear Analysis
  • 7.10. Transient Analysis of the FSDT
  • 7.10.1. Equations of Motion
  • 7.10.2. The Finite Element Model
  • 7.10.3. Time Approximation
  • 7.10.4. Numerical Examples
  • 7.11. Summary
  • Problems
  • 8. Non-linear Bending of Elastic Shells
  • 8.1. Introduction
  • 8.2. Governing Equations
  • 8.2.1. Geometric Description
  • 8.2.2. General Strain-Displacement Relations
  • 8.2.3. Stress Resultants
  • 8.2.4. Displacement and Strain Fields
  • 8.2.5. Equations of Equilibrium
  • 8.2.6. Shell Constitutive Relations
  • 8.3. Finite Element Formulation
  • 8.3.1. Weak Forms
  • 8.3.2. Finite Element Model
  • 8.3.3. Linear Analysis
  • 8.3.4. Non-linear Analysis
  • 8.4. Summary
  • Problems
  • 9. Finite Element Formulations of Solid Continua
  • 9.1. Introduction
  • 9.1.1. Background
  • 9.1.2. Summary of Definitions and Concepts from Continuum Mechanics
  • 9.1.3. Energetically-Conjugate Stresses and Strains
  • 9.2. Various Strain and Stress Measures
  • 9.2.1. Introduction
  • 9.2.2. Notation
  • 9.2.3. Conservation of Mass
  • 9.2.4. Green-Lagrange Strain Tensors
  • 9.2.4.1. Green-Lagrange strain increment tensor
  • 9.2.4.2. Updated Green-Lagrange strain tensor
  • 9.2.5. Euler-Almansi Strain Tensor
  • 9.2.6. Relationships Between Various Stress Tensors
  • 9.2.7. Constitutive Equations
  • 9.3. Total Lagrangian and Updated Lagrangian Formulations
  • 9.3.1. Principle of Virtual Displacements
  • 9.3.2. Total Lagrangian Formulation
  • 9.3.2.1. Weak form
  • 9.3.2.2. Incremental decompositions
  • 9.3.2.3. Linearization
  • 9.3.3. Updated Lagrangian Formulation
  • 9.3.3.1. Weak form
  • 9.3.3.2. Incremental decompositions
  • 9.3.3.3. Linearization
  • 9.3.4. Some Remarks on the Formulations
  • 9.4. Finite Element Models of 2-D Continua
  • 9.4.1. Introduction
  • 9.4.2. Total Lagrangian Formulation
  • 9.4.3. Updated Lagrangian Formulation
  • 9.4.4. Computer Implementation
  • 9.4.5. A Numerical Example
  • 9.5. Conventional Continuum Shell Finite Element
  • 9.5.1. Introduction
  • 9.5.2. Incremental Equations of Motion
  • 9.5.3. Finite Element Model of a Continuum
  • 9.5.4. Shell Finite Element
  • 9.5.5. Numerical Examples
  • 9.5.5.1. Simply-supported orthotropic plate under uniform load
  • 9.5.5.2. Four-layer (0°/907/907deg;/0°) clamped plate under uniform load
  • 9.5.5.3. Cylindrical shell roof under self-weight
  • 9.5.5.4. Simply-supported spherical shell under point bad
  • 9.5.5.5. Shallow cylindrical shell under point load
  • 9.6. A Refined Continuum Shell Finite Element
  • 9.6.1. Backgound
  • 9.6.2. Representation of Shell Mid-Surface
  • 9.6.3. Displacement and Strain Fields
  • 9.6.4. Constitutive Relations
  • 9.6.4.1. Isotropic and functionally-graded shells
  • 9.6.4.2. Laminated composite shells
  • 9.6.5. The Principle of Virtual Displacements and its Discretization
  • 9.6.6. The Spectral/hp Basis Functions
  • 9.6.7. Finite Element Model and Solution of Non-linear Equations
  • 9.6.7.1. The Newton procedure
  • 9.6.7.2. The cylindrical arc-length procedure
  • 9.6.7.3. Element-level static condensation and assembly of elements
  • 9.6.8. Numerical Examples
  • 9.6.8.1. A cantilevered plate strip under an end transverse load
  • 9.6.8.2. Post-buckling of a plate strip under axial compressive load
  • 9.6.8.3. An annular plate with a slit under an end transverse load
  • 9.6.8.4. A cylindrical panel subjected to a point load
  • 9.6.8.5. Pull-out of an open-ended cylindrical shell
  • 9.6.8.6. A pinched half-cylindrical shell
  • 9.6.8.7. A pinched cylinder with rigid diaphragms
  • 9.6.8.8. A pinched hemisphere with an 18° hole
  • 9.6.8.9. A pinched composite hyperboloidal shell
  • 9.7. Summary
  • Problems
  • 10. Weak-Form Finite Element Models of Flows of Viscous Incompressible Fluids
  • 10.1. Introduction
  • 10.2. Governing Equations
  • 10.2.1. Introduction
  • 10.2.2. Equation of Mass Continuity
  • 10.2.3. Equations of Motion
  • 10.2.4. Energy Equation
  • 10.2.5. Constitutive Equations
  • 10.2.6. Boundary Conditions
  • 10.3. Summary of Governing Equations
  • 10.3.1. Vector Form
  • 10.3.2. Cartesian Component Form
  • 10.4. Velocity-Pressure Finite Element Model
  • 10.4.1. Weak Forms
  • 10.4.2. Semi-discrete Finite Element Model
  • 10.4.3. Fully-Discretized Finite Element Model
  • 10.5. Penalty Finite Element Models
  • 10.5.1. Introduction
  • 10.5.2. Penalty Function Method
  • 10.5.3. Reduced Integration Penalty Model
  • 10.5.4. Consistent Penalty Model
  • 10.6. Computational Aspects
  • 10.6.1. Properties of the Finite Element Equations
  • 10.6.2. Choice of Elements
  • 10.6.3. Evaluation of Element Matrices in Penalty Models
  • 10.6.4. Post-Computation of Pressure and Stresses
  • 10.7. Computer Implementation
  • 10.7.1. Mixed Model
  • 10.7.2. Penalty Model
  • 10.7.3. Transient Analysis
  • 10.8. Numerical Examples
  • 10.8.1. Preliminary Comments
  • 10.8.2. Linear Problems
  • 10.8.3. Non-linear Problems
  • 10.8.4. Transient Analysis
  • 10.9. Non-Newtonian Fluids
  • 10.9.1. Introduction
  • 10.9.2. Governing Equations in Cylindrical Coordinates
  • 10.9.3. Power-Law Fluids
  • 10.9.4. White-Metzner Fluids
  • 10.9.5. Numerical Examples
  • 10.10. Coupled Fluid Flow and Heat Transfer
  • 10.10.1. Finite Element Models
  • 10.10.2. Numerical Examples
  • 10.10.2.1. Heated cavity
  • 10.10.2.2. Solar receiver
  • 10.11. Summary
  • Problems
  • 11. Least-Squares Finite Element Models of Flows of Viscous Incompressible Fluids
  • 11.1. Introduction
  • 11.2. Least-Squares Finite Element Formulation
  • 11.2.1. The Navier-Stokes Equations of Incompressible Fluids
  • 11.2.2. Numerical Examples
  • 11.2.2.1. Low Reynolds number flow past a circular cylinder
  • 11.2.2.2. Steady flow over a backward facing step
  • 11.2.2.3. Lid-driven cavity flow
  • 11.3. A Least-Squares Finite Element Model with Enhanced Element-Level Mass Conservation
  • 11.3.1. Introduction
  • 11.3.2. Unsteady Flows
  • 11.3.2.1. The velocity-pressure-vorticity first-order system
  • 11.3.2.2. Temporal discretization
  • 11.3.2.3. The standard L2-norm based Least-Squares model
  • 11.3.2.4. A modified L2-norm based Least-Squares model with improved element-level mass conservation
  • 11.3.3. Numerical Examples: verification Problems
  • 11.3.3.1. Steady Kovasznay flow
  • 11.3.3.2. Steady flow in a 1 X 2 rectangular cavity
  • 11.3.3.3. Steady flow past a large cylinder in a narrow channel
  • 11.3.3.4. Unsteady flow
  • past a circular cylinder
  • 11.3.3.5. Unsteady flow past a large cylinder in a narrow channel
  • 11.4. Summary and Future Direction
  • Problems
  • Appendix 1 Solution Procedures for Linear Equations
  • A1.1. Introduction
  • A1.2. Direct Methods
  • A1.2.1. Preliminary Comments
  • A1.2.2. Symmetric Solver
  • A1.2.3. Unsymmetric Solver
  • A1.3. Iterative Methods
  • Appendix 2 Solution Procedures for Non-linear Equations
  • A2.1. Introduction
  • A2.2. The Picard Iteration Method
  • A2.3. The Newton Iteration Method
  • A2.4. The Riks and Modified Risk Methods.