Cargando…

Basic Language of Mathematics.

This book originates as an essential underlying component of a modern, imaginative three-semester honors program (six undergraduate courses) in Mathematical Studies. In its entirety, it covers Algebra, Geometry and Analysis in One Variable. The book is intended to provide a comprehensive and rigorou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schäffer, Juan Jorge
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBSCO_ocn883570436
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140712s2014 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d CDX  |d N$T  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OTZ  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d REC  |d AU@  |d OCLCO  |d JBG  |d OCLCQ  |d STF  |d LEAUB  |d UKAHL  |d OCLCQ  |d BTN  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 016738734  |2 Uk 
019 |a 890604246  |a 1058199115  |a 1264839689 
020 |a 9789814596107  |q (electronic bk.) 
020 |a 9814596108  |q (electronic bk.) 
020 |a 9814596094 
020 |a 9789814596091 
020 |z 9789814596091 
024 8 |a 40023901784 
029 1 |a DEBBG  |b BV043060396 
029 1 |a DEBSZ  |b 410558133 
029 1 |a DEBSZ  |b 44650470X 
029 1 |a DEBSZ  |b 454910851 
035 |a (OCoLC)883570436  |z (OCoLC)890604246  |z (OCoLC)1058199115  |z (OCoLC)1264839689 
050 4 |a QA37.3 .S33 2014 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510 
049 |a UAMI 
100 1 |a Schäffer, Juan Jorge. 
245 1 0 |a Basic Language of Mathematics. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2014. 
300 |a 1 online resource (321 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a PREFACE; Some symbols; CONTENTS; Index of terms; Index of names; Index of conditions; Index of symbols; Chapter 1. SETS; 11. Introduction; 12. Sets and their members; 13. Inclusion; 14. Set formation; 15. Special sets; 16. Basic operations; 17. Pairs; product sets; 18. Partitions; Chapter 2. MAPPINGS; 21. The concept of a mapping; 22. The graph of a mapping; 23. The range of a mapping; images and pre-images; the partition of a mapping; 24. Inclusion, identity, and partition mappings; 25. Composition of mappings; diagrams; restrictions and adjustments; 26. Mappings from a set to itself. 
505 8 |a Chapter 3. PROPERTIES OF MAPPINGS31. Constants; 32. Injective, surjective, and bijective mappings; 33. Inverses and invertibility; 34. Injectivity, surjectivity, and bijectivity: The induced mappings; 35. Cancellability; 36. Factorization; Chapter 4. FAMILIES; 41. The concept of a family; 42. Special families; 43. Families of sets; 44. Products and direct unions; 45. General associative and distributive laws; 46. Set-products and set-coproducts; Chapter 5. RELATIONS; 51. Relations in a set; 52. Images and pre-images; 53. Reversal, composition, and restriction of relations. 
505 8 |a 54. Relations from set to set functional relations; 55. Properties of relations; 56. Order; 57. Equivalence relations; Chapter 6. ORDERED SETS; 61. Basic concepts; 62. Isotone mappings; 63. Products; 64. Properties of ordered sets; 65. Lexicographic products and ordered direct unions; Chapter 7. COMPLETELY ORDERED SETS; 71. Completely ordered sets; 72. Pre-completely ordered sets; 73. Closure mappings; 74. Galois correspondences; 75. The fixed-point theorem for isotone mappings; Chapter 8. INDUCTION AND RECURSION; 81. Proof by induction; 82. Recursive definitions. 
505 8 |a Chapter 9. THE NATURAL NUMBERS91. Principles of counting; 92. Order; 93. General induction and recursive definitions; 94. Iteration; 95. Essential uniqueness of counting systems; 96. Addition and subtraction; 97. Multiplication and division; 98. Divisors and multiples; Chapter 10. FINITE SETS; 101. Finite sets and their cardinals; 102. Induction; 103. Operations with finite sets; 104. Factorials and binomial coefficients; 105. Orders in finite sets; 106. Finiteness without counting; Chapter 11. FINITE SUMS; 111. Commutative monoids; 112. Finite sums; 113. Sums of families with finite support. 
505 8 |a 114. Repeated and double sums115. Natural multiples; 116. The Inclusion-Exclusion Principle; 117. Sums in monoids of families; 118. Sums without zero; Chapter 12. COUNTABLE SETS; 121. Countable sets; 122. Some uncountable sets; 123. Another characterization of finiteness; Chapter 13. SOME ALGEBRAIC STRUCTURES; 131. Commutative monoids and groups; 132. Commutative rings; 133. Fields; Chapter 14. THE REAL NUMBERS: COMPLETE ORDERED FIELDS; 141. Introduction; 142. Ordered fields; 143. Complete ordered fields; 144. Essential uniqueness of complete ordered fields; Chapter 15. THE REAL-NUMBER SYSTEM. 
500 |a 151. The Real-Number System. 
520 |a This book originates as an essential underlying component of a modern, imaginative three-semester honors program (six undergraduate courses) in Mathematical Studies. In its entirety, it covers Algebra, Geometry and Analysis in One Variable. The book is intended to provide a comprehensive and rigorous account of the concepts on sets, mapping, family, order, number (both natural and real), as well as such distinct procedures like Proof by Induction and Recursive Definition, and the interaction between these ideas; with attempts at including insightful notes on historic and cultural settings and. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 2 |a Mathematics 
650 6 |a Mathématiques. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Mathematics  |2 fast 
650 7 |a Grundlage  |2 gnd 
650 7 |a Mathematik  |2 gnd 
776 0 8 |i Print version:  |a Schäffer, Juan Jorge.  |t Basic Language of Mathematics.  |d Singapore : World Scientific Publishing Company, ©2014  |z 9789814596091 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=810377  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26877639 
938 |a Coutts Information Services  |b COUT  |n 28616133 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1730185 
938 |a EBSCOhost  |b EBSC  |n 810377 
938 |a YBP Library Services  |b YANK  |n 11964692 
994 |a 92  |b IZTAP